Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21090274-5    
  无机非金属及其复合材料 |
稻壳磷建筑石膏抹灰砂浆技术性能研究
成俊辰1, 赵志曼1,2, 张晖3, 全思臣4, 吴磊1, 廖仕雄1
1 昆明理工大学建筑工程学院,昆明 650500
2 昆明理工大学云南省土木工程防灾重点实验室,昆明 650500
3 云南云天化环保科技有限公司,云南 安宁 650300
4 云南凝创环保科技有限公司,云南 安宁 650300
Study on Technical Performance of Rice Husk Phosphate Building Gypsum Plastering Mortar
CHENG Junchen1, ZHAO Zhiman1,2, ZHANG Hui3, QUAN Sichen4, WU Lei1, LIAO Shixiong1
1 Faculty of Civil Engineering and Architecture, Kunming University of Science and Technology, Kunming 650500, China
2 Yunnan Key Laboratory of Civil Engineering Disaster Prevention, Kunming University of Science and Technology, Kunming 650500, China
3 Yunnan Yuntianhua Environmental Protection Technology Co., Ltd., Anning 650300, Yunnan,China
4 Yunnan Cohesive Innovation Environmental Protection Technology Co., Ltd., Anning 650300, Yunnan,China
下载:  全 文 ( PDF ) ( 10053KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了预处理前后的稻壳制成的稻壳磷建筑石膏砂浆的技术性能。将稻壳经洁净水、饱和石灰水、质量分数为2%的NaOH溶液浸泡处理后,来探究稻壳磷建筑石膏砂浆的表观密度、吸水率、分层度、保水性及立方体抗压强度,并通过红外光谱和扫描电镜分析稻壳的官能团变化以及砂浆界面过渡区的性能。结果表明:经洁净水、饱和石灰水处理的稻壳磷建筑石膏砂浆力学强度较未处理的砂浆有显著提升,经2%的NaOH溶液处理的砂浆的力学强度无明显变化。稻壳的红外光谱分析得出碱处理可有效去除稻壳的蜡质层、半纤维素、木质素和SiO2等组分。另外,界面过渡区分析结果表明,材料表面粗糙度和微裂纹会对表面性质产生影响,使表面结构发生变化,提升抗压强度和拉伸粘结强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
成俊辰
赵志曼
张晖
全思臣
吴磊
廖仕雄
关键词:  磷建筑石膏  稻壳  砂浆  界面过渡区  官能团  力学性能    
Abstract: In this work, the technical properties of rice husk phosphorous building gypsum mortar made from rice husk before and after pretreatment were studied. The rice husk was soaked in clean water, saturated lime water and 2% NaOH solution to explore the apparent density, water absorption, stratification, water retention and cube compressive strength of rice husk phosphorus building gypsum mortar. The functional groups of rice husk and the performance of mortar interface transition zone were analyzed by infrared spectrum and scanning electron microscope. The results show that the mechanical strength of the rice husk phosphorous building gypsum mortar treated with clean water and saturated limestone water is significantly improved compared with the untreated mortar, while the mechanical strength of the mortar treated with 2% NaOH solution has no obvious change. Infrared spectrum analysis of rice husk showed that alkali treatment could effectively remove the wax layer, hemicellulose, lignin and SiO2 components of rice husk. In addition, the analysis of the interfacial transition zone shows that the surface roughness and microcracks affect the surface properties, which changes the surface force field, and then affects the surface structure and mechanical properties.
Key words:  phosphorus building gypsum    rice husk    mortar    interface transition zone    functional group    mechanical properties
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TQ177.3+7  
  TU599  
基金资助: 国家自然科学基金(51662022);云南省科技厅工业高新技术专项(202003AA080032);昆明理工大学分析测试基金(2020M20192210088)
通讯作者:  lzd2005@126.com   
作者简介:  成俊辰,2017年6月毕业于西北民族大学,获得工学学士学位。现为昆明理工大学建筑工程学院硕士研究生,在赵志曼教授的指导下进行研究。目前主要研究领域为新型建筑材料。
赵志曼,昆明理工大学建筑工程学院,教授,硕士研究生导师,博士。2006年11月至2007年11月前往美国华盛顿大学材料科学与工程系作访问学者。主要从事建筑材料领域的研究与教学,重点研究固体废弃物在建筑材料领域的资源化利用。在国内外重要期刊发表文章50余篇,申报或授权实用新型和发明专利30余项。
引用本文:    
成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
CHENG Junchen, ZHAO Zhiman, ZHANG Hui, QUAN Sichen, WU Lei, LIAO Shixiong. Study on Technical Performance of Rice Husk Phosphate Building Gypsum Plastering Mortar. Materials Reports, 2022, 36(Z1): 21090274-5.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21090274
1 董超颖,孙振平.粉煤灰综合利用,2014(4),51.
2 赵志曼,栾扬,全思臣,等.建筑材料学报,2018,21(2),247.
3 叶学东.硫酸工业,2017(1),40.
4 Li Ying, Ding Xuefeng, Guo Yupeng, et al. Journal of Hazardous Mate-rials, 2011, 186, 2151.
5 Gao Yue, Guo Xinbo, Liu Yu, et al. Scientific Reports, 2018, 8, 10482.
6 Wang Zhaofeng, Yu Jingfang, Zhang Xin, et al. ACS Applied Materials & Interfaces, 2016, 8(2), 1434.
7 Qin Ling, Gao Xiaojian, Chen Tiefeng. Journal of Cleaner Production, 2018, 191, 220.
8 Savastano H, Warden P G, Coutts R S P. Cement and Concrete Composites, 2000, 22(5), 379.
9 彭小芹,马铭彬,吴芳.土木工程材料,重庆大学出版社,2013.
10 Choudhary M, Singh D, Devnani G L, et al. Materials Today: Procee-dings,2021,45,4760.
11 彭小芹,王冲,李新禄,等.无机材料性能学基础,重庆大学出版社,2020.
12 Goodman B A. Journal of Bioresources and Bioproducts, 2020, 5(3), 143.
13 Bisht N, Gope P C. Materials Today: Proceedings, 2018, 5(11), 24330.
14 Shang Xiaoyu, Yang Jingwei, Song Qun, et al. Journal of Cleaner Production, 2020, 276, 124184.
15 贾敬华.稻草的醚化改性.硕士学位论文,东北大学,2005.
16 孙振平,张丽华.同济大学学报(自然科学版),2015,43(3),430.
17 黄昱. 醚化稻草改性机理的光谱研究.硕士学位论文,东北大学,2008.
18 何艳峰,李秀金,方文杰,等.可再生能源,2007(5),31.
19 Gastaldi G, Capretti G, Focher B, et al. Industrial Crops & Products, 1998, 8(3), 205.
20 Daiane Romanzini, Heitor Luiz Ornaghi Junior, Sandro Campos Amico, et al. Materials Research, 2012, 15(3), 415.
21 刘东国.稻草的预处理及其糖化发酵产乙醇研究.硕士学位论文,南昌大学,2019.
22 陈同海,贾明印,杨彦峰,等.当代化工,2013,42(11),1558.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[3] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[4] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[5] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[6] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[7] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[8] 李京军, 谭德林, 牛建刚. 砂浆流变参数的Marsh筒法和微坍法测定[J]. 材料导报, 2022, 36(9): 21010230-7.
[9] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[10] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[11] 杨荣周, 陈佩圆, 葛进进, 徐颖, 王佳, 刘家兴, 谢昊天. 增幅循环荷载下CFRP约束型橡胶砂浆的疲劳特征[J]. 材料导报, 2022, 36(9): 21040223-10.
[12] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[13] 李博文, 刘洋, 李宗霖, 齐佳敏, 谭聪, 何莹, 仇浩. 生物炭对土壤酶活性影响的机理研究进展[J]. 材料导报, 2022, 36(7): 20060202-6.
[14] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[15] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed