Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 21030276-7    https://doi.org/10.11896/cldb.21030276
  高分子与聚合物基复合材料 |
氨丙基咪唑离子液体修饰纤维素气凝胶吸附剂对刚果红的清除研究:高性能与吸附机理
宋文琦1,2, 霍文娟1, 杨金腾1, 罗晨1, 訾帅1, 刘玉坤1, 历亚星1, 钱立伟2
1 西京学院理学院,西安 710123
2 陕西科技大学陕西省轻化工助剂化学与技术协同创新中心,西安 710021
Aminopropyl Imidazolium Ionic Liquid Modified Cellulosic Aerogel Adsorbent for Congo Red Removal:High-performance and Adsorption Mechanism
SONG Wenqi1,2, HUO Wenjuan1, YANG Jinteng1, LUO Chen1, ZI Shuai1, LIU Yukun1, LI Yaxing1, QIAN Liwei2
1 School of Science, Xijing University, Xi'an 710123, China
2 Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an 710021, China
下载:  全 文 ( PDF ) ( 6489KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作介绍了一种基于氨丙基咪唑离子液体(AMIBr)改性的纤维素气凝胶吸附剂(CA-g-AMIBr),并将其用于清除水中偶氮染料刚果红(CR)。其制备方法是以棉浆板为原料,通过碱溶剂体系溶解、再生并交联获得纤维素气凝胶(CA)。经醛基改性后,利用AMIBr作为改性剂通过席夫碱反应制得吸附剂CA-g-AMIBr。系统表征并分析了CA-g-AMIBr的表面形貌、化学结构和取代度。研究结果表明,CA-g-AMIBr不仅表现出良好的三维网络交织结构,而且其表面富含咪唑盐官能团。分析吸附实验结果发现,CA-g-AMIBr的饱和吸附容量可达478 mg·g-1,远高于原始CA的吸附能力(32 mg·g-1)。通过吸附模型进行拟合发现,CA-g-AMIBr对CR的吸附过程符合准二级吸附动力学模型和Langmuir吸附等温线模型,并且其吸附机制由AMIBr阳离子基团与CR阴离子之间的化学吸附主导。另外,CA-g-AMIBr在五次吸附-脱附循环后仍显示出较高的吸附性能,并且对CR具有优异的吸附选择性。因此,本工作为新型生物质吸附剂材料的开发和应用提供了实验依据和研究思路,可满足可持续发展和环境保护的趋势和要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋文琦
霍文娟
杨金腾
罗晨
訾帅
刘玉坤
历亚星
钱立伟
关键词:  纤维素  离子液体  刚果红  席夫碱反应  吸附剂    
Abstract: In this work, an aminopropyl imidazolium ionic liquid (AMIBr) modified cellulosic aerogel (CA) adsorbent (CA-g-AMIBr) was synthesized, and utilized to the removal of the azo dye Congo red from water. The preparation procedure was as follows. First, the cotton pulp was used as a raw material to obtain CA through the process of dissolution and regeneration in an alkali solvent system. After modification of CA with aldehyde group, the CA-g-AMIBr was prepared by Schiff base reaction with AMIBr as a modifier. In addition, the surface morphology, chemical structure and degree of substitution of as-prepared CA-g-AMIBr was systematically characterized and analyzed. The results show that CA-g-AMIBr not only shows a well-defined three-dimensional network interweaving structure, but also exhibites abundant imidazolium salt functional groups on its surface. Consequently, the adsorption experiments reveal that the saturated adsorption capacity of CA-g-AMIBr can reach 478 mg·g-1, which is much higher than that of CA (32 mg·g-1). Besides, the adsorption model fitting results demonstrates that the adsorption process of CA-g-AMIBr towards CR conforms to the pseudo-second order adsorption kinetic model and Langmuir adsorption isotherm model, indicating that the adsorption mechanism is dominated by the chemical adsorption between the AMIBr cationic group and CR anions. Furthermore, CA-g-AMIBr can show good adsorption performance after five adsorption-desorption cycles and display excellent selective adsorption property. Therefore, this work provides experimental basis and research ideas for the development of new biomass adsorbents, which is conducive to the trends and requirements of sustainable development and environmental protection.
Key words:  cellulose    ionic liquid    Congo red    Schiff base reaction    adsorbents
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  TQ352  
  O647.33  
基金资助: 国家自然科学基金(21805177);陕西省轻化工助剂化学与技术协同创新中心开放基金(XTKF-2019-06);西京学院特区人才基金(XJ18T03)
通讯作者:  songwenqi@xijing.edu.cn   
作者简介:  宋文琦,西京学院副教授,本硕博均就读于西北工业大学,2017年获得材料学博士学位,同年入职西京学院工作至今,主要从事环境友好型高分子材料的制备与应用研究。以第一作者在国内外重要学术期刊Chemical Engineering Journal、Separation and Purification Technology等发表论文10余篇,申请国家发明专利10项,授权3项。
引用本文:    
宋文琦, 霍文娟, 杨金腾, 罗晨, 訾帅, 刘玉坤, 历亚星, 钱立伟. 氨丙基咪唑离子液体修饰纤维素气凝胶吸附剂对刚果红的清除研究:高性能与吸附机理[J]. 材料导报, 2022, 36(12): 21030276-7.
SONG Wenqi, HUO Wenjuan, YANG Jinteng, LUO Chen, ZI Shuai, LIU Yukun, LI Yaxing, QIAN Liwei. Aminopropyl Imidazolium Ionic Liquid Modified Cellulosic Aerogel Adsorbent for Congo Red Removal:High-performance and Adsorption Mechanism. Materials Reports, 2022, 36(12): 21030276-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030276  或          http://www.mater-rep.com/CN/Y2022/V36/I12/21030276
1 Zhang S, Yang M, Qian L, et al. Cellulose, 2018, 25(6), 3557.
2 Ahmad A, Mohd-Setapar S H, Chuong C S, et al. RSC Advances, 2015, 5, 30801.
3 Song W, Zhu M, Zhu Y, et al. Cellulose, 2020, 27(4), 2161.
4 Onwukamike K N, Grelier S, Grau E, et al. ACS Sustainable Chemistry & Engineering, 2018, 7(2), 1826.
5 Li Z, Zhong L, Zhang T, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7(11), 9984.
6 Qian L, Yang M, Chen H, et al. Carbohydrate Polymers, 2019, 218, 154.
7 Zhang Y, Shen Y, Yuan J, et al. Angewandte Chemie International Edition, 2006, 45(35), 5867.
8 Kim U, Lee Y R, Kang T H, et al. Carbohydrate Polymers,2017, 163, 34.
9 Song W, Yang M, Zhao Y, et al. Reactive and Functional Polymers, 2020, 157, 104776.
10 Xu C, Yuan L, Liang G, et al. Journal of Materials Chemistry C,2016, 4, 3175.
11 Qian L, Liu W, Yang M, et al. Talanta, 2020, 217, 121085.
12 Liu W, Koh K L, Lu J, et al. Journal of Materials Chemistry, 2012, 22(35), 18395.
13 Li S, Huang X, Liu J, et al. Journal of Hazardous Materials, 2020, 384, 121457.
14 Marçal L, de Faria E H, Saltarelli M, et al. Industrial & Engineering Chemistry Research, 2011, 50(1), 239.
15 Song W, Qian L, Gao B, et al. Journal of Materials Science, 2019, 54(8), 6212.
16 Mersly L E, Mouchtari E M E, Moujahid E M, et al. Journal of Science: Advanced Materials and Devices, 2021, 6(1), 118.
17 Lei C, Pi M, Kuang P, et al. Journal of Colloid and Interface Science, 2017, 496, 158.
18 Rong X, Qiu F, Qin J, et al. Journal of Industrial and Engineering Che-mistry, 2015, 26, 354.
19 Maiti D, Mukhopadhyay S, Devi P S. ACS Sustainable Chemistry & Engineering, 2017, 5(12), 11255.
20 Xu J, Xu D, Zhu B, et al. Applied Surface Science, 2018, 435, 1136.
21 Beyki M H, Bayat M, Shemirani F. Bioresource Technology, 2016, 218, 326.
22 Liu J, Wang N, Zhang H, et al. Journal of Environmental Management, 2019, 238, 473.
23 Lei C, Zhu X, Zhu B, et al. Journal of Colloid and Interface Science, 2016, 466, 238.
24 Zhu T, Chen J S, Lou X W D. The Journal of Physical Chemistry C, 2012, 116(12), 6873.
25 Chen H, Zheng Y, Cheng B, et al. Journal of Alloys and Compounds, 2018, 735, 1041.
26 Song W, Liu Y, Qian L, et al. Chemical Engineering Journal, 2016, 287, 482.
27 Zheng Y, Cheng B, You W, et al. Journal of Hazardous Materials, 2019, 369, 214.
28 Hu H, Liu J, Xu Z, et al. Applied Surface Science, 2019, 478, 981.
[1] 李燕, 陈梅芹, 乔艳辉, 康新平. 废白土-花生壳生物炭吸附剂的制备及对Pb(Ⅱ) 的吸附[J]. 材料导报, 2022, 36(6): 20110276-6.
[2] 张尧, 毕恩兵, 茹鹏斌, 陈汉. 一种咪唑基离子液体钝化制备的高效反式钙钛矿太阳能电池[J]. 材料导报, 2022, 36(2): 21010190-6.
[3] 于佳酩, 王士鹏, 董娅慧, 王雨梦, 李玉, 程倩. 基于磁场-真空协同作用局部调制胆甾型纤维素[J]. 材料导报, 2022, 36(11): 20120091-6.
[4] 徐玲琳, 杨肯, 穆帆远, 杨正宏, 薛伶俐. 纤维素醚对硫铝酸盐水泥浆体水组分及水化产物演变的影响[J]. 材料导报, 2022, 36(10): 21010095-6.
[5] 李凯旋, 王焕磊. 生物多糖衍生的超级电容器用碳电极材料研究进展[J]. 材料导报, 2022, 36(1): 20080007-13.
[6] 郑海宇, 王琴, 王悦, 张瑞峰, 刘克俊. 环境温度对纤维素醚改性石膏工作性的影响[J]. 材料导报, 2021, 35(z2): 649-654.
[7] 时钢印, 彭龙泉, 马莉. 基于专利视角的偏光片用三醋酸纤维素膜发展研究[J]. 材料导报, 2021, 35(z2): 678-683.
[8] 武梓诺, 贾泓钰, 张宇晴, 陈旸. 口腔托槽用ZTA陶瓷材料凝胶注模成型工艺的研究[J]. 材料导报, 2021, 35(Z1): 100-103.
[9] 崔杏辉, 吴晓鹏, 戚文豪, 邢益强, 潘孟博, 杜浩然, 马成良. 金属有机骨架材料合成方法对氮氧化物吸附性能的影响[J]. 材料导报, 2021, 35(Z1): 121-127.
[10] 冯燕霞, 李北罡. 磁性Y/CTS/FA复合吸附剂的制备及对直接湖蓝5B的吸附[J]. 材料导报, 2021, 35(6): 6028-6034.
[11] 陶百福, 王志辉, 郭瑞丽. 基材亲疏水性能对EVOH/LIS复合吸附剂成型结构及提锂性能的影响[J]. 材料导报, 2021, 35(6): 6180-6188.
[12] 应宗耀, 郑煜铭, 邵再东, 程璇. 胺基改性二氧化硅气凝胶的制备及对刚果红的吸附性能[J]. 材料导报, 2021, 35(20): 20005-20010.
[13] 张莲芝, 吴张永, 王庭有, 朱启晨, 蔡晓明, 莫子勇. 纳米氧化锆多层吸附的模拟及实验研究[J]. 材料导报, 2021, 35(18): 18040-18046.
[14] 陈定宁, 沈昊宇, 成瑾瑾, 胡美琴. “枣糕状”结构杂多酸离子液体负载磁性复合材料的制备及超声脱硫的催化性能[J]. 材料导报, 2021, 35(12): 12181-12189.
[15] 魏洁, 邵自强. 纳米纤维素材料在功能膜材料中的应用研究进展[J]. 材料导报, 2021, 35(1): 1203-1211.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed