Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 97-100    
  无机非金属及其复合材料 |
超粗糙氧化锆复合陶瓷磁性剪切增稠光整加工特性
周强1, 田业冰1, 于宏林2, 范增华1, 钱乘1, 孙志光1
1 山东理工大学机械工程学院,淄博 255049
2 山东工业陶瓷研究设计院,淄博 255000
Magnetic Shear Thickening Finishing Characteristics of Ultra-rough ZrO2 Composite Ceramics
ZHOU Qiang1, TIAN Yebing1, YU Honglin2, FAN Zenghua1, QIAN Cheng1, SUN Zhiguang1
1 School of Mechanical Engineering, Shandong University of Science and Technology, Zibo 255049, China
2 Shandong Industrial Ceramics Research and Design Institute, Zibo 255000, China
下载:  全 文 ( PDF ) ( 5228KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对超粗糙表面氧化锆陶瓷材料的光整问题,配置磁性剪切增稠光整加工介质,利用设计的磁场发生装置,在主轴转速900 r/min、X轴进给速度10 000 mm/min和加工间隙0.7 mm的实验参数下,探究不同磨粒和磨粒粒径对氧化锆陶瓷件加工的影响规律。对250 μm绿碳化硅的磁性剪切增稠光整介质进行加工时,工件表面粗糙度值能在180 min内降低38%。10 μm立方氮化硼配置的磁性剪切增稠光整介质,能使工件表面粗糙度值在210 min内降低41%。在磨粒粒径相同的条件下,随着磨粒硬度的提高,加工效率增大。在磨粒质量分数相同的条件下,磨粒粒径越小,获取的最终表面粗糙度值越小。观测结果表明,对比未加工表面,加工后的表面变得光滑,材料去除肉眼可见,验证了所提出方法的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周强
田业冰
于宏林
范增华
钱乘
孙志光
关键词:  氧化锆陶瓷  光整加工  磁性剪切增稠  表面粗糙度    
Abstract: In order to solve the problem of finishing ultra-rough ZrO2 ceramics, the magnetic shear thickening and finishing medium was prepared. The influence of processing with different abrasive types and particle sizes was investigated using the designed magnetic field generator under the experimental parameters of spindle speed of 900 r/min, X axis feed speed of 10 000 mm/min and processing clearance of 0.7 mm. The surface roughness of the workpiece was increased by 38% within 180 min with 250 μm green silicon carbide magnetic shear thickening finishing medium. The roughness of the workpiece surface was increased by 41% in 210 min with 10 μm cubic boron nitride as magnetic shear thickening finishing medium. The processing efficiency increased with the increase of abrasive hardness under the condition of same abrasive particle size. Moreover, under the condition of the same abrasive mass fraction, the smaller abrasive particle size was, the smaller surface roughness value was obtained. The results showed that the processed surface became smooth and the material was removed, which verified the effectiveness of the proposed method compared with the orignal surface.
Key words:  ZrO2 ceramics    surface finishing    magnetic shear thickening    surface roughness
                    发布日期:  2021-12-09
ZTFLH:  TH161  
基金资助: 国家自然科学基金(51875329);山东省泰山学者工程专项(tsqn201812064);山东省自然科学基金(ZR2017MEE050);山东省重点研发计划资助项目(2018GGX103008;2019GGX104073);山东省高等学校青创科技项目(2019KJB030);淄博市重点研发计划项目(2019ZBXC070)
通讯作者:  tianyb@sdut.edu.cn   
作者简介:  周强,男,1995年生,山东理工大学机械工程学院硕士研究生。主要研究方向为磨粒光整加工。
田业冰,男,1979年生,山东理工大学机械工程学院教授、博士研究生导师。主要研究方向为精密与超精密加工、智能监控及大数据分析。
引用本文:    
周强, 田业冰, 于宏林, 范增华, 钱乘, 孙志光. 超粗糙氧化锆复合陶瓷磁性剪切增稠光整加工特性[J]. 材料导报, 2021, 35(z2): 97-100.
ZHOU Qiang, TIAN Yebing, YU Honglin, FAN Zenghua, QIAN Cheng, SUN Zhiguang. Magnetic Shear Thickening Finishing Characteristics of Ultra-rough ZrO2 Composite Ceramics. Materials Reports, 2021, 35(z2): 97-100.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/97
1 Garvie R C, Nicholson P S.Journal of the American Ceramic Society, 2010,55(6), 303.
2 Ghyngazov S A. Nuclear Instruments & Methods in Physics Research. DOI: 10.1016/j.nimb.2018.02.007.
3 Zou H, Zhang Y, Liu L, et al. Advances in Applied Ceramics, 2018, 117(7), 420.
4 Ho C, Ding H, Chen X, et al. Ceramics International, 2018, 44( 9), 10451.
5 Glauser R, Sailer D, Wohlwend D, et al. International Journal of Prosthodontics, 2004, 17(3), 285.
6 王望龙, 王龙, 田欣利, 等. 机床与液压, 2015, 43(7), 176.
7 陈凡, 赵波, 童景琳. 航空精密制造技术, 2012, 48(6), 18.
8 Ma C X, Shamoto E, Moriwaki T. Defense Technology, 2005, 1(2), 229.
9 Kumar M, Melkote S, Lahoti G. CIRP Annals-Manufacturing Technology, 2011, 60(1), 367.
10 陈光忠, 何志坚, 杨岳. 表面技术, 2016, 45(1), 101.
11 梁伟, 张桂香, 张鹏, 等. 表面技术, 2018, 47(9), 310.
12 田业冰, 范增华, 刘志强, 等. 中国专利, CN106584218B, 2019.
13 Fan Z H, Tian Y B, Zhou Q, et al. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2020, 234(6-7), 1069.
14 Fan Z H, Tian Y B, Zhou Q, et al. Precision engineering, 2020, 64, 300.
[1] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[2] 金鑫源, 兰亮, 何博, 朱奥迪, 高双. 选区激光熔化成形金属零件表面粗糙度研究进展[J]. 材料导报, 2021, 35(3): 3168-3175.
[3] 郭翠霞, 吴张永, 谢文玲, 张建平, 张莲芝, 邹应辉. 基于SiC纳米工作液和常规乳化液的高速走丝电火花线切割加工表面特性的对比研究[J]. 材料导报, 2021, 35(10): 10166-10170.
[4] 梁静静, 张相召, 赵光辉, 刘桂武, 邵海成, 乔冠军. 磨削加工对Al2O3陶瓷表面质量与力学性能的影响[J]. 材料导报, 2020, 34(16): 16020-16024.
[5] 马英怡, 刘玉德, 石文天, 韩冬, 侯岩军. 芳纶纤维增强复合材料的微铣削与铣磨精加工[J]. 材料导报, 2020, 34(16): 16177-16181.
[6] 肖长江, 窦志强, 朱振东. 氧化铁刻蚀金刚石表面形貌的表征及形成机理[J]. 材料导报, 2020, 34(14): 14045-14050.
[7] 孙书兵, 刘艳松, 何小珊, 王锋, 何智兵, 黄景林, 刘磊. 空心微球上Al-W多层涂层的制备与表征[J]. 材料导报, 2018, 32(24): 4297-4302.
[8] 王毅, 王盼, 索红莉, 贾强, 卢东琪, 李怀洲, 吴海明. 哈氏合金电化学抛光工艺的研究*[J]. 《材料导报》期刊社, 2017, 31(2): 37-40.
[9] 余剑武, 胡其丰, 段文, 何利华, 沈湘. 电加工8418钢的能量分配与表面粗糙度模型*[J]. 《材料导报》期刊社, 2017, 31(14): 153-157.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed