Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 8-12    
  无机非金属及其复合材料 |
水热法制备固态电解质Li3xLa2/3-xTiO3粉末
李雅洁1, 刘剑1, 徐晨2, 邢镔3
1 四川大学机械工程学院,成都 610065
2 中国工程物理研究院,成都 610065
3 重庆工业大数据创新中心有限公司, 工业大数据应用技术国家工程实验室,重庆 400707
Solid Electrolyte Li3xLa2/3-xTiO3 Powder Prepared by Hydrothermal Method
LI Yajie1, LIU Jian1, XU Chen2, XING Bin3
1 School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
2 China Academy of Engineering Physics, Chengdu 610065, China
3 National Engineering Laboratory for Industrial Big-data Application Technology, Chongqing Innovation Center of Industrial Big-Data Co. Ltd., Chongqing 400707, China
下载:  全 文 ( PDF ) ( 5475KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 具有钙钛矿结构的固态电解质钛酸镧锂(Li3xLa2/3-xTiO3, LLTO)因在室温下具有较高的电导率,是目前固态电解质领域重要的研究热点。探究可以制备出含杂相少、微观应变小、粒度分布均匀适宜、尺寸均一、形貌优良的LLTO固态电解质粉末的条件十分必要。通过水热法在900 ℃及1 050 ℃两种不同煅烧保温温度下制备固态电解质LLTO,研究了在这两种不同保温条件下制备的LLTO的合成情况、形貌、粒度、微观应变等。结果表明在900 ℃和1 050 ℃的保温温度下都能成功合成LLTO,但两种保温温度下合成的粉末均为不规则形状颗粒,且均存在一定程度的团聚;从最终合成的物质的相组成来看,900 ℃保温条件下合成的LLTO含杂相更少。结合激光粒度仪测量的颗粒尺寸与X射线衍射测量的晶粒尺寸,从宏观的激光粒度测量看,在900 ℃保温2 h,合成的粉末粒径分布在1.7~3 μm和33~57 μm范围,在1 050 ℃保温2 h,合成的粉末粒径分布在2.5~7 μm和24~48 μm;而利用X射线衍射从微观角度分析,平均晶粒尺寸分别为217.3 nm(900 ℃)、314.3 nm(1 050 ℃),与激光粒度仪分析的平均颗粒尺寸存在差异;从制备的颗粒的微观应变来看,在两种保温温度下均存在微观应变导致的晶格参数变化,在更高的保温温度(1 050 ℃)下,微观应变更大。综合实验结果可知,煅烧保温温度900 ℃是制备LLTO粉末更适宜的保温条件。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雅洁
刘剑
徐晨
邢镔
关键词:  水热法  LLTO  固态电解质  微观应变    
Abstract: The solid electrolyte lanthanum titanate lithium (LLTO) with perovskite structure is an important research hotspot in the field of solid electrolyte because of its high conductivity at room temperature. It is necessary to study the conditions for the preparation of LLTO powder with less heterophase, small microstrain, uniform and suitable particle size distribution, uniform size and fine morphology. In this paper, the solid electrolyte LLTO was prepared by hydrothermal method under two different heat preservation temperatures (900 ℃ and 1 050 ℃). The synthesis, morphology, particle size, microstrain and other conditions of LLTO prepared under these two different heat preservation conditions were studied. The results show that the LLTO can be successfully synthesized at 900 ℃ and 1 050 ℃, but the powders synthesized at the two temperatures are both irregular particles and have a certain degree of agglomeration. From the point of view of the phase composition, LLTO synthesized under the thermal insulation condition of 900 ℃ contains less heterophases. Considering particle size from laser granulometer and grain size from X ray diffraction, from macro-perspective of laser granulometer, powder particle size distribution was in 1.7—3 μm and 33—57 μm at 900 ℃ for 2 h and in 2.5—7 μm and 24—48 μm at 1 050 ℃ for 2 h while the average grain size analysis from the microscopic view by XRD were 217.3 nm (900 ℃), 314.3 nm (1 050 ℃). From the perspective of the microstrain of the prepared particles, microstrain has existed to lead to the change of lattice parameters at both temperatures, and the microstrain was larger at the higher heat preservation temperature (1 050 ℃). Based on the experimental results, when the heat preservation temperature is 900 ℃, it is more suitable for the preparation of LLTO powder.
Key words:  hydrothermal process    LLTO    solid electrolyte    microstrain
                    发布日期:  2021-12-09
ZTFLH:  TQ134.1+1  
基金资助: 国家自然科学基金(51975390)
通讯作者:  xingbin@casic.com.cn   
作者简介:  李雅洁,四川大学机械工程学院硕士研究生,主要从事陶瓷粉末制备技术及电解质的研究.
邢镔,博士,高级工程师,重庆工业大数据创新中心首席科学家,主要研究数据处理和工业数字仿真。
引用本文:    
李雅洁, 刘剑, 徐晨, 邢镔. 水热法制备固态电解质Li3xLa2/3-xTiO3粉末[J]. 材料导报, 2021, 35(z2): 8-12.
LI Yajie, LIU Jian, XU Chen, XING Bin. Solid Electrolyte Li3xLa2/3-xTiO3 Powder Prepared by Hydrothermal Method. Materials Reports, 2021, 35(z2): 8-12.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/8
1 闫金定. 航空学报, 2014, 35(10), 2767.
2 郑子山, 张中太, 唐子龙, 等. 化学世界, 2004(5), 270.
3 Wen J W, Yu Y, Chen C H. Materials Express, 2012, 2(3), 197.
4 Yao X, Huang B, Yin J, et al. Chinese Physics B, 2016, 25(1), 216.
5 杜青霞. 全固态锂离子电池固体电解质及正极材料的制备及表征. 硕士学位论文, 中国科学技术大学, 2016.
6 Fergus J W. Journal of Power Sources, 2010, 195(15), 4554.
7 Jung Y S, Oh D Y, Nam Y J, et al. Israel Journal of Chemistry, 2015, 55(5), 472.
8 张恒, 郑丽萍, 聂进, 等. 化学进展, 2014, 26(6), 1005.
9 Abhilash K P, Selvin P C, Nalini B, et, al. Journal of Physics and Chemistry of Solids, 2016, 91, 114.
10 韩景立, 于燕梅, 陈健, 等. 电化学, 2003(2), 222.
11 Stramare S, Thangadurai V, Weppner W. Chemistry of Materials, 2003, 15, 3974.
12 潘清涛. 纳米材料的水热法制备与表征. 博士学位论文, 兰州大学, 2009.
13 李吉庆, 刘洋, 赵新玲, 等. 应用科技, 2011, 38(12), 55.
14 施尔畏, 夏长泰, 王步国, 等. 中国科学E辑:技术科学, 1997, 27(2), 126.
[1] 杜广智, 张骞, 廖继飞, 林玉, 伍凡, 向将来, 王晓如, 张瑞阳. 水热处理增强磷酸钴催化臭氧分解性能的研究[J]. 材料导报, 2021, 35(z2): 81-85.
[2] 贾政刚, 张学习, 钱明芳, 耿林, 熊岳平. 全固态锂硫电池中界面问题的研究现状[J]. 材料导报, 2021, 35(9): 9097-9107.
[3] 王三胜, 王莹. 石墨提纯工艺研究进展综述和新技术展望[J]. 材料导报, 2020, 34(Z2): 147-151.
[4] 杨露, 郭敏, 宋志成, 刘大伟, 倪玉凤. 基于高长径比TiO2纳米线的染料敏化太阳能电池光阳极的制备[J]. 材料导报, 2020, 34(Z1): 7-12.
[5] 莫若飞. 多孔腔骰子形和六足形氧化亚铜的水热合成[J]. 材料导报, 2020, 34(Z1): 148-152.
[6] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[7] 董大彰, 赵梦媛, 解昊, 边凌峰, 杨星, 孟彬. Ba、Ga共掺杂对石榴石型固态电解质Li7La3Zr2O12显微组织及电导率的影响[J]. 材料导报, 2020, 34(4): 4001-4006.
[8] 罗志虹, 冀晨皓, 朱广彬, 李富杰, 周立, 罗鲲. 提高锂电极稳定性的方法及其在锂氧电池中的应用[J]. 材料导报, 2020, 34(19): 19067-19074.
[9] 刘盼, 朱彬, 吕东风, 崔帅, 崔燚, 魏颖娜, 魏恒勇, 卜景龙. 多级结构CoNiO2/TiN复合纤维的制备及电化学性能[J]. 材料导报, 2020, 34(10): 10024-10029.
[10] 刘建伟,王嘉楠,朱蕾,延卫. 柔性锂硫电池材料:综述[J]. 材料导报, 2020, 34(1): 1155-1168.
[11] 刘光蓉, 李露, 张祖超, 冯支斌. 人造金红石母液制备α-Fe2O3纳米颗粒的研究[J]. 材料导报, 2019, 33(Z2): 150-153.
[12] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
[13] 吕斌, 余亚金, 高党鸽, 马建中, 苏姣姣. 微波水热法制备磺酸盐型Gemini表面活性剂及其表征[J]. 材料导报, 2019, 33(2): 357-362.
[14] 祝璐,尹沛羊,邓湘云,李建保,张伟,金宏. Ce3+掺杂钛酸钡纳米管薄膜的制备与性能[J]. 《材料导报》期刊社, 2018, 32(11): 1924-1927.
[15] 于晓晨, 张丹丹, 李哲, 王高凯, 高孟磊, 段理, 蒋自强, 王新刚, 赵鹏. Er3+/Yb3+掺杂NaGd(WO4)2粉体的制备与发光性能*[J]. 《材料导报》期刊社, 2017, 31(8): 1-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed