Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 488-491    
  高分子与聚合物基复合材料 |
角膜接触镜的聚羧酸甜菜碱表面改性研究
余洁, 赵海岚, 张岚
浙江省人民医院(杭州医学院附属人民医院)眼科,杭州 310014
Surface Modification of Contact Lenses with Biocompatible Polymers Enables Anti-fouling Surface
YU Jie, ZHAO Hailan, ZHANG Lan
Department of Ophthalmology, Zhejiang Provincial People's Hospital (Hospital of Hangzhou Medical College), Hangzhou 310014, China
下载:  全 文 ( PDF ) ( 2713KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 角膜接触镜由于具有方便美观、柔软不易碎、视野更宽、不上水汽等优点,使用率非常高。然而,在角膜接触镜佩戴过程中,蛋白质易沉积到镜片表面,导致炎症等多种不良反应。针对这一关键临床问题,本工作提出了利用表面引发原子转移自由基聚合(ATRP)对硅水凝胶角膜接触镜进行表面修饰,将两性离子单体羧酸甜菜碱聚合接枝到角膜接触镜表面,通过接触角测量仪、X射线光电子能谱技术(XPS)、原子力显微镜(AFM)等手段证明了接枝聚合的成功进行。聚羧酸甜菜碱(PCBMA)接枝后的角膜接触镜具有极低的粗糙度和超强的亲水性。由于PCBMA的优异的生物相容性,PCBMA接枝后的角膜接触镜能有效阻抗蛋白质的吸附和细菌的黏附。该方法证明了PCBMA表面接枝是一种有效的角膜接触镜表面改性手段。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余洁
赵海岚
张岚
关键词:  角膜接触镜  生物相容性  表面修饰  原子转移自由基聚合  抗蛋白质吸附    
Abstract: Currently, more and more people use contact lenses because of the multiple advantages including less affection by wet weather, a wider field of vision, elegant personal appearance, etc. However, protein adsorption on the surface of contact lenses can cause a series of adverse effects, such as reduced vision, inflammatory complications, and increased discomfort. In order to address this issue, carboxylic acid betaine was grafted to the surface of silicone hydrogel-based contact lenses via surface-initiated atom transfer radical polymerization. The successful surface grafting was confirmed by contact angle measurement, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Due to the outstanding biocompatibility of poly(carboxylic acid betaine), the contact lenses after surface modification exhibited excellent resistance to protein adsorption and bacterial adhesion. Moreover, this method shows great potential in surface modification of contact lenses.
Key words:  contact lenses    biocompatibility    surface modification    atom transfer radical polymerization    antifouling
                    发布日期:  2021-12-09
ZTFLH:  TQ314  
基金资助: 浙江省医药卫生科技计划项目(2019PY020);浙江省哲学社会科学规划课题(19NDJC068YB)
通讯作者:  zleye2018@163.com   
作者简介:  余洁,医学硕士,毕业于浙江大学眼科学专业,现为浙江省人民医院眼科副主任医师,从事眼科临床工作十余年,致力于眼表疾病、屈光斜弱视及双眼视功能方面的临床工作及研究。尤其在干眼症、近视防控、弱视治疗、视疲劳功能障碍等方面具有较深的造诣。
张岚,2008年6月毕业于山西医科大学,获得眼科硕士学位。同年加入浙江省人民医院眼科工作至今,主要从事视光及眼底内科工作。
引用本文:    
余洁, 赵海岚, 张岚. 角膜接触镜的聚羧酸甜菜碱表面改性研究[J]. 材料导报, 2021, 35(z2): 488-491.
YU Jie, ZHAO Hailan, ZHANG Lan. Surface Modification of Contact Lenses with Biocompatible Polymers Enables Anti-fouling Surface. Materials Reports, 2021, 35(z2): 488-491.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/488
1 Moreddu R, Vigolo D, Yetisen A K. Advanced Healthcare Materials, 2019, 8, 1900368.
2 Chen L, Yin Y A, Liu Y X, et al. Chinese Journal of Polymer Science, 2017, 35, 1181.
3 Luensmann D, Jones L. Contact Lens & Anterior Eye, 2012, 35, 53.
4 Rabiah N. I, Scales C W, Fuller G G. Colloids and Surfaces B: Biointerfaces, 2019, 180, 229.
5 Mutlu Z, Es-haghi S S, Cakmak M. Advanced Healthcare Materials, 2019, 8, 1801390.
6 Li R, Guan X, Lin X, et al. Acta Biomaterialia, 2020, 110, 105.
7 Korogiannaki M, Samsom M, Schmidt T A, et al. ACS Applied Materials & Interfaces, 2018, 10, 30125.
8 Luensmann D, Jones L. Contact Lens & Anterior Eye, 2008, 31, 179
9 Yin P, Huang G B, Tse W H, et al. Journal of Materials Chemistry B, 2015, 3, 3234.
10 Kim H J, Ryu G C, Jeong K S, et al. Macromolecular Research, 2015, 23, 74
11 Toki I, Komatsu M, Shimizu Y, et al. Journal of Applied Polymer Science, 2013, 127, 3657.
12 Wang B, Lin Q,Jin T, et al. RSC Advances, 2015, 5, 3597.
13 Zhu Z, Li X. Journal of Applied Polymer Science, 2014, 131, 39867.
14 Yeh S, Chen C, Chen W, et al. Langmuir 2014, 30, 11386.
15 Rezaei F, Abbasi-Firouzjah M, Shokri B. Journal of Physics D: Applied Physics, 2014, 47, 085401.
16 Hu X H, Tan H P, Li D, et al. Advanced Performance Materials, 2013, 29, 8.
17 闫树鹏, 张冲, 吕华. 功能高分子学报, 2020, 33(1), 1.
18 Zhao Y, Deng Y, Tang Z, et al. Langmuir, 2019, 35, 1919.
19 黄全江, 南君, 王三反, 等. 材料导报, 2018, 32(2), 203
20 Wu J, Lin Y, Li H, et al. Journal of Colloid and Interface Science, 2017, 485, 251
21 孙丁, 张同辉, 王雪芬. 广州化工, 2020, 48(7), 83.
22 Bai T, Li J, Imren S, et al. Nature Medicine, 2019, 25, 1566.
23 Ishihara K, Oda H, Konno T. Biomaterials, 2020, 230, 119628.
24 李琪,高昌录,孙秀花. 合成材料老化与应用, 2018, 47(3), 94.
25 Yasuhiko I, Kazuhiko I. Science and Technology of Advanced Materials, 2012, 13, 064101.
26 Zhao J, Qin Z, Wu J, et al. Biomaterials Science, 2018, 6, 200.
27 Yang W, Liu S, Bai T, et al. Nano Today, 2014, 9, 10.
28 Li Y, Liu R, Shi Y, et al. Theranostics, 2015, 5, 583.
29 Liu G, Li K, Wang H, et al. ACS Applied Materials & Interfaces, 2020, 12, 16125.
30 Xu L, Ma P, Yuan B, et al. RSC Advances, 2014, 4, 15030.
31 Liu S, Jiang S. Nano Today, 2016, 11, 285.
32 Keefe A, Jiang S. Nature Chemistry, 2012, 4, 59.
33 Shao Q, Jiang S. Advanced Materials, 2015, 27, 15.
[1] 吴雪莲, 杨建, 屈阳, 王秀敏. 形状记忆聚合物智能材料在生物医学领域的应用[J]. 材料导报, 2021, 35(z2): 492-500.
[2] 任书芳, 冯润妍, 程寿年, 曾俊菱, 宫雪, 王庆涛. 二维材料MXenes在传感领域的应用研究进展[J]. 材料导报, 2021, 35(5): 5075-5088.
[3] 李华芳, 郑宜星, 王鲁宁. 可降解医用金属功能化表面改性研究进展[J]. 材料导报, 2021, 35(1): 1168-1176.
[4] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[5] 范燕, 徐昕荣, 石志峰, 刘佳, 李冰, 徐蒙蒙. 生物医用金属材料表面改性的研究进展[J]. 材料导报, 2020, 34(Z2): 327-329.
[6] 朱俊名, 董梁, 秦溱, 李振楠, 袁青梅. 碳基及氧化锌量子点在癌症诊疗应用中的研究进展[J]. 材料导报, 2020, 34(9): 9075-9085.
[7] 于翔, 桂久青, 张雪寅, 严亮, 卢晓龙. 尼龙66/纳米羟基磷灰石复合纤维膜的制备及骨缺损修复性能评价[J]. 材料导报, 2020, 34(12): 12185-12190.
[8] 杨丹,刘妍,钟正祥,田宫伟,樊文倩,王宇,齐殿鹏. 植入式神经微电极[J]. 材料导报, 2020, 34(1): 1107-1113.
[9] 曾德鹏, 余森, 王岚, 于振涛, 刘印, 盖晋阳, 代晓军. 医用金属材料表面自身纳米化研究进展[J]. 材料导报, 2019, 33(Z2): 343-347.
[10] 吴成宝, 林列书, 李慎兰, 盖国胜, 杨玉芬. 表面纳米修饰重质碳酸钙的制备及形貌特征和粒度表征[J]. 材料导报, 2019, 33(z1): 149-152.
[11] 张燕. 一步法制备无表面修饰剂花状金纳米颗粒及其表面增强拉曼散射性能研究[J]. 材料导报, 2019, 33(z1): 314-317.
[12] 刘新华, 储兆洋, 李永, 郑宏亮, 方寅春. 含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物的制备及性能[J]. 材料导报, 2019, 33(2): 342-346.
[13] 阮世超, 罗丹丹, 郝亚, 白雪, 陈岑. 氧化铱/聚多巴胺/层粘连蛋白仿生涂层的制备[J]. 材料导报, 2018, 32(24): 4351-4356.
[14] 白静静, 苏会博, 刘志伟. 异氰酸酯功能化碳纳米管/热塑性聚氨酯弹性体复合材料的制备及流变性能[J]. 材料导报, 2018, 32(24): 4386-4391.
[15] 钟红荣, 张岩, 包红, 方艳, 吴婷芳, 朱勇, 张小宁, 徐水. 丝素/明胶/壳聚糖支架材料的构建及表征[J]. 材料导报, 2018, 32(22): 3954-3960.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed