Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 346-352    
  金属与金属基复合材料 |
铝/镁异质金属搅拌摩擦焊技术研究进展
郑洋1,2, 宿振宇1, 张璇1
1 天津工业大学机械工程学院,天津 300387
2 天津市现代化机电装备技术重点实验室,天津 300387
Research Progress on Aluminum/Magnesium Dissimilar Joints Prepared by Friction Stir Welding
ZHENG Yang1,2, SU Zhenyu1, ZHANG Xuan1
1 School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
2 Tianjin Area Major Laboratory of Advanced Mechatronics Equipment Technology, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 6577KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 汽车轻量化是实现燃油汽车节能减排、新能源汽车增程降耗的有效手段,已成为汽车工业可持续发展的必经之路。多材料混合车身在兼顾安全与成本的基础上,通过轻质材料和先进制造工艺的合理使用来降低车重,是目前汽车轻量化的主流研究方向之一。作为铝、镁资源大国,发展铝-镁混合车身结构及相应的连接技术是符合我国国情的汽车轻量化解决路径。然而,氩弧焊、电阻焊、高能束焊等熔焊技术难以制备高质量铝/镁异质接头,液态焊材剧烈反应在连接界面处形成的粗大晶粒和Al-Mg金属间化合物极易造成接头发生组织恶化、性能下降等问题。搅拌摩擦焊(Friction Stir Welding, FSW)是一种新型固相焊接技术,其通过搅拌头产生的摩擦热促进金属材料的塑性变形以提高其互相混合程度,从而实现焊材的连接,在铝、镁异种合金的连接方面具有广阔的应用前景,被誉为“焊接史上的第二次革命”。本文从接头成形过程与微观组织、焊接工艺对接头性能的影响、接头性能的改善方法三个方面总结了铝/镁异种合金FSW技术的研究进展,针对搅拌头结构优化、超声振动辅助FSW、添加中间层或钎料、复合焊接技术等接头性能改善的最新研究结果,展望了常规和改型FSW技术未来的重点研究方向,旨在为铝、镁异种合金的连接及高质量铝/镁异质接头的设计与制备提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑洋
宿振宇
张璇
关键词:  汽车轻量化  铝/镁异质接头  搅拌摩擦焊  接头组织结构  接头性能    
Abstract: Vehicle lightweight is an effective method to realize energy saving and emission reduction for fuel vehicles as well as range extension and electricity economization for new energy vehicles, which has become the only route for the sustainable development of automobile industry. Multi-material hybrid body can reduce the vehicle weight via reasonable selection of lightweight materials and advanced manufacturing technologies based on the safety and cost requirements, which is one of the main research directions of automotive lightweight. As a large country abundant with aluminum (Al) and magnesium (Mg) resources, the development of Al-Mg hybrid body structure and corresponding joining technology is in line with our national conditions in finding the solution ways for vehicle lightweight. However, the traditional fusion welding (including argo-narc welding, electric resistance welding, and high energy beam welding) is difficult to prepare high-quality Al/Mg dissimilar joints. The coarse grains and Al-Mg intermetallic compounds formed at the joint interface due to the violate reaction between liquid welding materials is easy to cause the deterioration in joint microstructure and joint properties. As a newly developed solid-phase welding technique, friction stir welding (FSW) can facilitate the plastic deformation and interlocking degree of welding materials under the frictional heat generated by the FSW tool, so as to join the welding materials. FSW exhibits great application potential in joining the dissimilar metals between Al alloys and Mg alloys, and it is known as the second revolution in the welding history. In this paper, the research progress of Al/Mg dissimilar joints prepared by FSW is summarized from three aspects: joints forming process and microstructure, the effects of welding processes on joint properties, the improvement methods of joint properties. In view of the latest research results of joint performance improvement, such as structural optimization of FSW tool, ultrasonic vibration assisted FSW, addition of intermediate layer or brazing filler materials, composite welding technology, the key research directions of conventional and modified FSW technology in the future are prospected. The purpose of this paper is to provide reference for the joining Al and Mg dissimilar alloys along with the design and preparation of high-quality Al/Mg dissimilar joints.
Key words:  vehicle lightweight    Al/Mg dissimilar joints    friction stir welding    joint microstructure    joint properties
                    发布日期:  2021-12-09
ZTFLH:  TG457.1  
基金资助: 天津市自然科学基金青年项目(19JCQNJC02800)
通讯作者:  zhengyang@tiangong.edu.cn   
作者简介:  郑洋,天津工业大学机械工程学院讲师、硕士研究生导师。2016年7月博士毕业于北京航空航天大学材料科学与工程学院,2016—2017年就职于中国石油天然气管道局,2017-2019年在河北工业大学机械工程学院进行博士后研究工作,2019年11月入职天津工业大学机械工程学院。主持天津市自然科学基金青年项目、河北省高层次人才资助项目;参研国家重点研发计划“战略性国际科技创新合作”重点专项。入选天津市高校青年后备人才培养计划。主要从事材料连接技术、材料表面改性技术的研究工作。近年来,在Corrosion Science, Materials Science and Engineering C, Progress in Natural Science: Materials International, Applied Surface Science, Materials等期刊上发表SCI文章10余篇。
引用本文:    
郑洋, 宿振宇, 张璇. 铝/镁异质金属搅拌摩擦焊技术研究进展[J]. 材料导报, 2021, 35(z2): 346-352.
ZHENG Yang, SU Zhenyu, ZHANG Xuan. Research Progress on Aluminum/Magnesium Dissimilar Joints Prepared by Friction Stir Welding. Materials Reports, 2021, 35(z2): 346-352.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/346
1 节能与新能源汽车技术路线图战略咨询委员会, 中国汽车工程学会. 节能与新能源汽车技术路线图, 机械工业出版社, 2017, pp. 58.
2 Robson J, Panteli A, Prangnell P B. Science and Technology of Welding and Joining, 2012, 17, 447.
3 付瑞东, 李艺君. 金属加工(热加工), 2020(6), 14.
4 David S A, Debroy T. Science, 1992, 257, 497.
5 El-Sayed M M, Shash A Y, Abd-Rabou M, et al. Journal of Advanced Joining Processes, 2021, 3, 100059.
6 武传松, 吕学奇, 宿浩, 等. 机械工程学报, 2020, 56(6), 4.
7 Singh V P, Patel S K, Ranjan A, et al. Journal of Materials Research and Technology, 2020, 9, 6217.
8 Meng X C, Huang Y X, Cao J, et al. Progress in Materials Science, 2021, 115, 100706.
9 Song B, Zhai Y Y, Zuo D W, et al. Rare Metal Materials and Enginee-ring, 2020, 49, 1483.
10 Yang C L, Wu C S, Shi L. Journal of Alloys and Compounds, 2020, 843, 156021.
11 刘震磊, 崔祜涛, 姬书得, 等. 热加工工艺, 2016, 45(13), 206.
12 刘震磊, 崔祜涛, 姬书得, 等. 焊接学报, 2016, 37(6), 23.
13 马英磊, 郑洋, 张建军, 等. 焊接技术, 2021, 50(3), 6.
14 Rao H M, Jordon J B, Boorgu S K, et al. International Journal of Fatigue, 2017, 105, 16.
15 Simar A, Marie-Noëlle A F. Science and Technology of Welding and Joining, 2017, 22, 389.
16 Somasekharan A C, Murr L E. Materials Characterization, 2004, 52, 49.
17 Qin H L, Zhang H, Wu H Q. Materials Science and Engineering A, 2015, 626, 322.
18 Mofid M A, Loryaei E. Journal of Materials Research and Technology, 2019, 8, 3872.
19 Kostka A, Coelho R S, Santos J, et al. Scripta Materialia, 2009, 60, 953.
20 Sato Y S, Park S H C, Michiuchi M, et al. Scripta Materialia, 2004, 50, 1233.
21 Firouzdor V, Kou S. Metallurgical and Materials Transactions A, 2010, 41, 3238.
22 肖长源. Al/Mg异种金属搅拌摩擦焊金属间化合物的形成机理研究. 硕士学位论文, 西南交通大学, 2016.
23 Xu Y, Ke L M, Ouyang S, et al. Journal of Manufacturing Processes, 2021, 64, 1059.
24 Peng P, Wang K S, Wang W, et al. Materials Science and Engineering A, 2021, 802, 140554.
25 Shi H, Chen K, Liang Z Y, et al. Journal of Materials Science and Technology, 2017, 33, 359.
26 朱浩, 张二龙, 莫淑娴, 等. 焊接学报, 2020, 41(1), 34.
27 Mohammadi J, Behnamian Y, Mostafaei A, et al. Materials Characterization, 2015, 101, 189.
28 孙嵩, 王快社, 王文, 等. 机械工程材料, 2019(2), 63.
29 Li P Q, You G Q, Wen H Y, et al. Journal of Materials Processing Technology, 2019, 264, 55.
30 Śliwa R E, Myśliwiec P, Ostrowski R, et al. Procedia Manufacturing, 2019, 27, 158.
31 何志高. 厚板铝/镁异种金属搅拌摩擦焊接工艺研究. 硕士学位论文, 南昌航空大学, 2019.
32 Venkateswaran P, Reynolds A P. Materials Science and Engineering A, 2012, 545, 26.
33 Boccarusso L, Astarita A, Carlone P, et al. Journal of Manufacturing Processes, 2019, 44, 376.
34 张真, 付雪松, 陈吉, 等. 航空制造技术, 2019(12), 22.
35 Tan S, Zheng F Y, Chen J, et al. Journal of Magnesium and Alloys, 2017, 5, 56.
36 Prasad B L, Neelaiah G, Neelaiah M G, et al. Journal of Magnesium and Alloys, 2018, 6, 71.
37 李佩琪, 游国强, 徐轩曦, 等. 稀有金属材料与工程, 2019,48(5), 1551.
38 Kumar K P V, Balasubramanian M. Materials Today: Proceedings, 2020, 22, 2883.
39 Dong Z B, Song Q, Ai X X, et al. Journal of Manufacturing Processes, 2019, 42, 106.
40 周红云. 铝/镁异种合金搅拌摩擦焊工艺试验研究. 硕士学位论文, 南京理工大学, 2016.
41 Sameer M D, Birru A K. Journal of Magnesium and Alloys, 2019, 7, 264.
42 Kumar U, Acharya U, Saha S C, et al. Materials Today: Proceedings, 2020, 26, 2083.
43 毛育青, 柯黎明, 刘奋成, 等. 焊接学报, 2017,38(3), 51.
44 杨涛. 铝镁异种金属搅拌摩擦搭接焊接头微观组织与力学性能研究. 硕士学位论文, 西安建筑科技大学, 2019.
45 Mehta K P, Carlone P, Astarita A, et al. Materials Science & Engineering A, 2019, 759, 252.
46 Talebizadehsardari P, Musharavati F, Khan A, et al. Materials Today Communications, 2021, 26, 101965.
47 Chen W, Wang W X, Liu Z P, et al. Journal of Alloys and Compounds, 2021, 861, 157942.
48 金玉花, 甘瑞根, 邵庆丰, 等. 焊接学报, 2017, 38(8), 68.
49 Lin Y J, Lin C S. Corrosion Science, 2021, 180, 109203.
50 Duan S W, Wu D T, Liu W Y, et al. Vacuum, 2020, 176, 109299.
51 Huang Y X, Wan L, Meng X C, et al. Journal of Manufacturing Processes, 2018, 35, 420.
52 Liu H J, Hu Y Y, Wang H, et al. Journal of Materials Processing Technology, 2018, 255, 596.
53 褚强, 郝思洁, Sejani D, 等. 电焊机, 2020(9), 44.
54 Sharma H K, Bhatt K, Shah K. Procedia Technology, 2016, 23, 566.
55 Wang X P, Morisada Y, Fujii H. Journal of Materials Science and Technology, 2021, 85, 158.
56 Xu Y, Ke L M, Mao Y Q, et al. Materials Characterization, 2021, 174, 111022.
57 吴东, 李文亚, 温泉, 等. 精密成形工程, 2019(6), 114.
58 吕学奇, 杨春靓, 武传松. 机械工程学报, 2016, 52(24), 58.
59 Lv X Q, Wu C S, Yang C L, et al. Journal of Materials Processing Technology, 2018, 254, 145.
60 Zhao J J, Wu C S, Su H. Journal of Manufacturing Processes, 2021, 65, 328.
61 Kumar S, Wu C S. Journal of Alloys and Compounds, 2020, 827, 154343.
62 Zhao J J, Wu C S, Su H. Journal of Manufacturing Processes, 2021, 62, 388.
63 Ji S D, Meng X C, Liu Z L, et al. Materials Letters, 2017, 201, 173.
64 Meng X C, Jin Y Y, Ji S D, et al. Journal of Materials Science & Technology, 2018, 34, 1817.
65 Song Q, Wang H R, Ji S D, et al. Journal of Manufacturing Processes, 2020, 59, 750.
66 Hu W, Ma Z W, Ji S D, et al. Journal of Materials Science & Technology, 2020, 53, 41.
67 Deng H B, Chen Y H, Zhang T M, et al. Materials Letters, 2019, 255, 126543.
68 Ji S D, Niu S Y, Liu J G, et al. Journal of Materials Processing Technology, 2019, 267, 141.
69 谢吉林, 尹立孟, 张体明, 等. 精密成形工程, 2019(6), 147.
70 Abdollahzadeh A, Shokuhfar A, Cabrera J M, et al. Journal of Manufacturing Processes, 2018, 34, 18.
71 Shah L H, Gerlich A, Zhou Y. International Journal of Advanced Manufacturing Technology, 2017, 11, 1.
72 Xu R Z, Ni D R, Yang Q, Liu C Z, et al. Science and Technology of Welding and Joining, 2017, 22, 512.
73 Ji S D, Niu S Y, Liu J G. Journal of Materials Science and Technology, 2019, 35, 1712.
74 Wang Y, Prangnell P B. Materials Characterization, 2018, 139, 100.
75 Chowdhury S H, Chen D L, Bhole S D, et al. Materials Science and Engineering A, 2013, 562, 53.
76 Gao Y, Morisada Y, Fujii H, et al. Materials Science and Engineering A, 2018, 711, 109.
77 Zheng Y, Pan X M, Ma Y L, et al. Materials, 2019, 12, 1115.
78 Asl N S, Mirsalehi S E, Dehghani K. Journal of Manufacturing Processes, 2019, 38, 338.
79 Abdollahzadeh A, Shokuhfar A, Cabrera J M, et al. Journal of Materials Processing Technology, 2019, 263, 296.
80 Zheng B, Hu X B, Lv Q Q, et al. Materials Letters, 2020, 261, 127138.
81 付邦龙. 铝合金/镁合金异种金属搅拌摩擦焊接工艺. 硕士学位论文, 山东大学, 2015.
82 刘全龙, 孔谅, 王敏. 电焊机, 2016(8), 50.
83 Maciel R, Bento T, Braga D F O, et al. Procedia Structural Integrity, 2019, 17, 949.
[1] 曾金成, 宋波, 左敦稳, 邓永芳. 外加辅助条件搅拌摩擦焊技术研究进展[J]. 材料导报, 2021, 35(7): 7162-7168.
[2] 刘敬萱, 沈健, 李锡武, 闫丽珍, 闫宏伟, 刘宏伟, 温凯, 李亚楠. 6005A-T5铝合金搅拌摩擦焊接头组织与疲劳性能[J]. 材料导报, 2021, 35(2): 2092-2097.
[3] 韩善果, 杨永强, 罗子艺, 蔡得涛, 郑世达. 线能量对铝/钢双光束激光焊接接头组织及性能的影响[J]. 材料导报, 2021, 35(2): 2109-2114.
[4] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[5] 蔺宏涛, 孟强, 王怡嵩, 王家毅, 张韵, 江海涛. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(6): 6126-6131.
[6] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[7] 金玉花, 张林, 张亮亮, 王希靖. 7050铝合金搅拌摩擦焊接头的微观织构演变与力学性能[J]. 材料导报, 2020, 34(20): 20107-20111.
[8] 金峰, 熊江涛, 石俊秒, 郭德伦, 李京龙. GH4169旋转摩擦焊飞边成形机理研究[J]. 材料导报, 2020, 34(10): 10144-10149.
[9] 仇一卿, 范祝男, 黄春平, 李宝华, 唐众民. 厚板Cu-Cr-Zr合金搅拌摩擦焊接接头沿厚度方向组织和力学性能的变化[J]. 材料导报, 2020, 34(10): 10162-10165.
[10] 陈宇豪, 薛松柏, 王博, 韩翼龙. 汽车轻量化焊接技术发展现状与未来[J]. 材料导报, 2019, 33(Z2): 431-440.
[11] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[12] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[13] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[14] 孟强, 车倩颖, 王快社, 张坤, 王文, 黄丽颖, 彭湃, 乔柯. 铝铜异种材料搅拌摩擦焊接接头微观组织与性能[J]. 材料导报, 2019, 33(12): 2030-2034.
[15] 张忠科, 张剑飞, 于洋, 王希靖. 厚板铝合金搅拌摩擦焊接头的冲击性能[J]. 材料导报, 2018, 32(22): 3936-3940.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed