Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 353-357    
  金属与金属基复合材料 |
A-TIG焊接方法研究现状及展望
刘自刚, 周晓静, 朱婷婷, 陈亮, 陈飞, 许强
诺力智能装备股份有限公司,浙江省智能物流装备工程技术研究中心,湖州 313100
Research Status and Prospect of A-TIG Welding Method
LIU Zigang, ZHOU Xiaojing, ZHU Tingting, CHEN Liang, CHEN Fei, XU Qaing
Engineering Research Center of Intelligent Logistics Equipment of Zhejiang Province, Noblelift Intelligent Equipment Co., Ltd., Huzhou 313100, China
下载:  全 文 ( PDF ) ( 2562KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 TIG焊作为一种高质量焊接方法的代表,具有焊接过程稳定、焊缝成形美观、焊缝质量高、焊接过程无飞溅等优点,但同时也存在单道焊接熔深浅、焊接速度慢、熔敷速率低等缺点。为了克服TIG焊存在的缺点,提出了A-TIG焊接方法,该焊接方法是先在待焊焊道表面涂覆一层活性剂,然后再进行施焊。该焊接方法在保留TIG焊优点的前提下,可以显著增大TIG焊单道焊接熔深,提高焊接生产效率。   近几年很多学者对A-TIG进行了大量研究,也开展了A-TIG焊在工业生产上的部分应用,但是A-TIG焊仍存在以下几方面问题:(1)A-TIG焊接需要涂覆活性剂的工序,不利于实现焊接过程的自动化,且活性剂的涂覆很难保证均匀稳定,限制了其在工业生产上的应用。(2)活性剂增大焊缝熔深的机理尚未形成统一的认识,对该机理的研究还不够深入。(3)需要针对不同的焊接母材开发不同的活性剂,且不同学者开发的活性剂千差万别,缺少统一的衡量标准,不利于活性剂的产业化。   针对不锈钢、铝合金、钛合金、镁合金、低碳钢等各焊接母材开发了增大熔深效果比较明显的活性焊剂,并且研究了活性焊剂对焊缝的表面成形和组织性能的影响。在活性剂的引入方面提出了气体输送活性剂的方式,基本实现了焊接过程的自动化和活性剂的均匀涂覆。对于活性剂增大焊缝熔深机理方面,提出了熔池表面张力改变理论、电弧收缩理论和热输入增加理论。   本文总结了A-TIG焊在不同焊接母材方面、活性剂的引入方面、熔深增大机理方面的研究进展,分析了A-TIG焊研究应用方面仍存在的问题,并对A-TIG将来的研究方向进行了前景展望,以期为进一步完善A-TIG焊接方法和推动A-TIG在工业生产上的应用提供一定的借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘自刚
周晓静
朱婷婷
陈亮
陈飞
许强
关键词:  A-TIG焊  焊接熔深  活性剂  电弧收缩  Marangoni对流    
Abstract: As a representative of high quality welding method, TIG welding has the advantages of stable welding process, beautiful weld forming, high weld quality and no spatter in the welding process, but at the same time, it also has the disadvantages of single weld depth, slow welding speed and low depositionrate.In order to overcome the shortcomings of TIG welding, the A-TIG welding method is proposed. The welding method is to apply a layer of active agent on the surface of the weld bead.Then the welding is carried out.Under the premise of retaining the advantages of TIG welding, this welding method can significantly increase the penetration depth of single pass TIG welding and improve the welding production efficiency. In recent years, many scholars for a lot of work on A-TIG, also conducted A-TIG welding part of the application in industrial production, but A-TIG research still exist the following problems: (1) A-TIG welding need to coating process of surfactant, is not conducive to realize the automation of welding process, and surfactant coating is very difficult to guarantee the uniform stability, limits its application in industrial production.(2) There is no unified understanding of the mechanism of the active agent increasing the weld penetration depth, and the research on this mechanism is not deep enough.(3) Different active agents need to be developed for different welding base materials, and the active agents developed by different scholars vary greatly, and the lack of a unified measurement standard is not conducive to the industrialization of active agents. Active flux was developed for stainless steel, aluminum alloy, titanium alloy, magnesium alloy, low carbon steel and other base materials, and the influence of active flux on the surface formation and microstructure properties of the weld was studied.In the aspect of introducing the active agent, the way of conveying the active agent by gas is proposed, which basically realizes the automation of the welding process and the uniform coating of the active agent.For the mechanism of increasing the depth of weld with active agent, the theory of changing the surface tension of weld pool, the theory of arc shrinkage and the theory of increasing heat input are put forward. This paper summarizes A-TIG in different welding mother material, the adding of surfactant, increase penetration mechanism of the progress in research of A - TIG welding is analyzed problems still exist in research applications, and A-TIG future research direction for the outlook, so as to further perfect A-TIG welding method research and promoting A-TIG provide certain reference application in industrial production.
Key words:  activating flux tungsten inert gas welding    welding penetration    activator    arc shrinkage    Marangoni
                    发布日期:  2021-12-09
ZTFLH:  TG444  
通讯作者:  2848318965@qq.com   
作者简介:  刘自刚,2013年6月毕业于兰州理工大学,获得工学硕士学位,高级工程师,现为诺力智能装备股份有限公司焊接工程师,主要从事新型高效焊接方法及装置,自动化焊接设备等方面的研发工作,2019年入选浙江省百千万高技能领军人才第三层次人才培养项目,现已申请专利29项,发表论文9篇。
周晓静,2008年6月毕业于湖州师范学院,工学学士学历,机械工程师,现为诺力智能装备股份有限公司科技管理部经理,主要从事高端仓储物流装备及物流系统集成领域的科技管理与研发协同工作,现已获得专利授权25项,参与制定国家标准4项,发表论文4篇。
引用本文:    
刘自刚, 周晓静, 朱婷婷, 陈亮, 陈飞, 许强. A-TIG焊接方法研究现状及展望[J]. 材料导报, 2021, 35(z2): 353-357.
LIU Zigang, ZHOU Xiaojing, ZHU Tingting, CHEN Liang, CHEN Fei, XU Qaing. Research Status and Prospect of A-TIG Welding Method. Materials Reports, 2021, 35(z2): 353-357.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/353
1 邹宜霖. 装备制造技术, 2016, 44(4), 127.
2 马壮, 张莉, 王义伟. 材料导报, 2014, 28(1), 91.
3 张聃, 尹玉环, 孙耀华, 等. 焊接学报, 2018, 39(10), 93.
4 栗慧, 邹家生, 姚君山, 等. 材料工程, 2018, 46(4), 66.
5 尹玉环, 张聃, 余果, 等. 焊接学报, 2017, 38(12), 61.
6 周泽杰, 黄志超, 曹高浩. 华东交通大学学报, 2012, 29(1), 20.
7 周泽杰, 黄志超. 热加工工艺, 2013, 42(11), 168.
8 沈向前, 邓鹏, 李耀辉. 电焊机, 2015, 45(12), 32.
9 杨成刚, 任泽良, 宋友民, 等. 精密成形工程, 2019, 11(5), 50.
10 吴其右, 王湘江, 冯英超, 等. 热加工工艺, 2019, 48(7), 73.
11 黄勇, 吴飞虎, 何成旦, 等. 兰州理工大学学报, 2011, 37(4), 27.
12 田锦. 热加工工艺, 2010, 39(5), 112.
13 王军, 崔雪松, 苑玉玲. 沈阳理工大学学报, 2016, 35(2), 104.
14 张瑞华, 王海涛, 王荣, 等. 焊接学报, 2010, 31(6), 13.
15 张瑞华, 樊丁, 余淑荣. 焊接学报, 2003, 24(2), 16.
16 张瑞华, 樊丁. 焊接学报, 2003, 24(1), 85.
17 黄勇, 林涛, 樊丁. 兰州理工大学学报, 2007, 33(1), 34.
18 樊丁, 顾玉芬, 林焰, 等. 甘肃工业大学学报, 2000, 26(3), 16.
19 马壮, 于秀秀, 时海芳, 等. 焊接学报, 2017, 38(9), 65.
20 任泽良, 杨成刚, 宋友民, 等. 热加工工艺, 2020, 49(23), 12.
21 刘聪. 黑龙江冶金, 2011, 31(3), 7.
22 靳海成, 周俊红, 王俊红, 等. 石油工程建设, 2012, 38(6), 66.
23 刘政军, 武小娟, 蒋焕文, 等. 热加工工艺, 2014, 43(1), 182.
24 姚军, 李仕臣, 崔反东. 热加工工艺, 2016, 45(3), 52.
25 杜贤昌, 郭淑兰, 董文, 等. 热加工工艺, 2014, 43(9), 175.
26 杜贤昌, 王毅, 郭淑兰, 等. 焊接学报, 2014, 35(4), 67.
27 Shen J, Zhai D J, Liu K, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(8), 2507.
28 Qin B, Yin F C, Zeng C Z, et al. Transactions of Nonferrous Metals So-ciety of China, 2019, 29(9), 1864
29 黄勇, 樊丁, 樊清华. 焊接, 2004, 48(3), 10.
30 Santhana Babu A V, Giridharan P K, Venugopal A, et al. Applied Mechanics and Materials, 2015, 766-767, 733.
31 Santhana Babu A V, Giridharan P K, Ramesh Narayanan P, et al. Applied Mechanics and Materials, 2014, 592-594, 489.
32 Fan D, Huang Y. Welding in the World, 2005, 49(1-2), 22.
33 Jayakrishnan S, Chakravarthy P, Muhammed Rijas A. Transactions of the Indian Institute of Metals, 2017, 70(5), 1329.
34 Neelima P, Agilan M, Saravanan K,et al. Transactions of the Indian National Academy of Engineering, Doi:10.1007/S41403-020-00195-7.
35 Venkatesan G, Muthupandi V, Fathaha Abdul Bari. Transactions of the Indian Institute of Metals, 2017, 70(6), 1185.
36 Akhilesh Kumar Singh, Vidyut Dey, Ram Naresh Rai. Arabian Journal for Science and Engineering, 2017, 42(11), 2605.
37 Skariya P D, Satheesh M, Edwin Raja Dhas J, et al. International Journal of Nano and Biomaterials, 2020, 8(3-4), 277.
38 黄勇, 邵锋, 樊丁, 等. 焊接, 2007(5), 47.
39 黄勇, 邵锋, 樊丁. 焊接技术, 2009, 38(3), 28.
40 樊丁, 牛书锋, 黄勇, 等. 兰州理工大学学报, 2009, 35(4), 23.
41 黄勇, 樊丁, 邵锋. 机械工程学报, 2010, 46(16), 113.
42 Huang Y, Fan D, Shao D. Science and Technology of Welding and Joining, 2012, 17(2), 122.
43 谢佳成, 邢嘉琳, 和昭鹏, 等. 轻合金加工技术, 2017, 45(2), 65.
44 黄勇, 姚宇航, 张建晓, 等. 兰州理工大学学报, 2015, 41(5), 11.
45 黄勇, 李涛, 王艳磊. 焊接学报, 2014, 35(1), 101.
46 马壮, 周鹏, 田琳, 等. 热加工工艺, 2012, 41(21), 177.
47 任泽良, 杨成刚, 宋友民. 精密成形工程, 2018, 10(5), 64.
48 刘政军, 陆璐, 苏允海, 等. 沈阳工业大学学报, 2015, 37(2), 143.
49 张瑞华, 尹燕, 樊丁, 等. 电焊机, 2008, 38(12), 41.
50 张瑞华, 尹燕, 樊丁, 等. 机械工程学报, 2008, 44(5), 175.
51 樊丁, 黄自成, 黄健康, 等. 焊接学报, 2016, 37(3), 62.
52 魏艳红, 徐艳利, 孙燕洁, 等. 焊接学报, 2009, 30(2), 37.
53 綦秀玲, 刘维豪, 赵麒翔, 等. 兵器材料科学与工程, 2019, 42(3), 91.
54 刘自刚. 电弧辅助活性TIG焊工艺及接头性能研究. 硕士学位论文, 兰州理工大学, 2013.
55 顾玉芬, 边春红, 李春凯, 等. 焊接学报, 2020, 41(6). 48.
56 Li C K, Shi Y, Gu Y F, et al. Journal of Manufacturing Processes, 2018, 32, 395.
57 黄勇, 樊丁. 焊接学报, 2008(1), 45.
58 黄勇, 樊丁. 焊接, 2003(4), 9.
59 张兆栋, 凡福群. 焊接学报, 2013, 34(5), 29.
60 朱丹丹, 李云霞. 电焊机, 2014, 44(10), 7.
[1] 代朝猛, 李彦, 段艳平, 刘曙光, 涂耀仁. 开关表面活性剂调控及增溶机理研究进展[J]. 材料导报, 2021, 35(9): 9218-9222.
[2] 张莲芝, 吴张永, 王庭有, 朱启晨, 郭翠霞, 蔡晓明, 莫子勇. 氧化锆添加量对四氧化三铁基复合材料性能的影响[J]. 材料导报, 2021, 35(6): 6035-6041.
[3] 姚玉梅, 袁湘汝, 韩鲁佳, 杨增玲, 刘贤. 畜禽骨蛋白质材料化利用的研究现状与发展趋势分析[J]. 材料导报, 2021, 35(17): 17136-17142.
[4] 许爱平, 侯继军, 董俊慧. 稀土活性剂对TC4钛合金激光焊焊接接头的影响[J]. 材料导报, 2020, 34(Z2): 348-350.
[5] 刘仁杰, 李三喜, 王松, 张爱玲. 蒙脱土剥离方法的研究进展[J]. 材料导报, 2020, 34(Z1): 249-254.
[6] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[7] 张理元, 由耀辉, 刘义武, 阮尚全. 无机沉淀胶溶法制备钛锂离子筛及其吸附性能研究[J]. 材料导报, 2019, 33(24): 4056-4061.
[8] 鲍艳, 刘盼, 郭佳佳. 利用双子表面活性剂辅助制备纳米材料和介孔材料的研究进展[J]. 材料导报, 2019, 33(21): 3678-3685.
[9] 吕斌, 余亚金, 高党鸽, 马建中, 苏姣姣. 微波水热法制备磺酸盐型Gemini表面活性剂及其表征[J]. 材料导报, 2019, 33(2): 357-362.
[10] 胡银春,张雪荣,黄棣,魏延,苏晓妹,周琼. 蒸发液滴中的流动与传质行为:理论与应用*[J]. 《材料导报》期刊社, 2017, 31(7): 1-5.
[11] 白利忠, 王彦辉, 张增一, 李方, 魏建飞. 水热法合成不同形貌的二硫化钼及其电容性能*[J]. 《材料导报》期刊社, 2017, 31(16): 12-15.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed