Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 318-324    
  金属与金属基复合材料 |
软磁性Co基块体非晶合金的研究进展
鞠帅威, 李艳辉, 张伟
大连理工大学材料科学与工程学院,三束材料改性教育部重点实验室,大连 116024
Research Progress in Soft-magnetic Co-based Bulk Metallic Glasses
JU Shuaiwei, LI Yanhui, ZHANG Wei
Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
下载:  全 文 ( PDF ) ( 5076KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Co基非晶合金不仅具有高热稳定、高强度、硬度,还显示出优异的软磁特性如低矫顽力、高磁导率、低铁损、低磁致伸缩系数等,尤其是高频下的导磁率、铁损性能极佳,有着重要的工业应用价值。但相对于软磁性Fe基非晶合金,Co基的合金体系较少、玻璃形成能力(GFA)和饱磁感应强度较低而影响了它们的广泛应用。近年,材料工作者研发出了一系列Co基块体非晶合金体系,并对它们的非晶形成机理、GFA、过冷液态稳定性、结晶化行为、磁性及力学性能等进行了广泛、深入的研究。本文对软磁性Co基块体非晶合金的研究进展进行了简述,并展望了其今后的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鞠帅威
李艳辉
张伟
关键词:  Co基非晶合金  玻璃形成能力  热稳定性  软磁性能    
Abstract: Co-based metallic glasses possess high thermal stability, high strength and hardness, and excellent soft magnetic properties including low coercivity, high permeability, low core loss, and low saturation magnetostriction. Especially, the remarkably high permeability and low core loss in high frequency make the Co-based metallic glasses great values in industrial application. In comparison with Fe-based metallic glasses, the alloy systems of the Co-based metallic glasses are fewer, and the glass-forming ability (GFA) and saturation magnetization are lower, which limit the scope of application. In recent years, materials researchers have developed series of Co-based bulk metallic glass (BMG) systems, and conducted extensive and in-depth research on the glass-forming mechanism, GFA, supercooled liquid stability, crystallization behavior, magnetic and mechanical properties of the Co-based BMGs. In this paper, we have reviewed the research progress in the soft-magnetic Co-based BMGs, and discussed the development orientations of the Co-based BMGs in the future.
Key words:  Co-based metallic glasses    glass-forming ability    thermal stability    soft magnetic properties
                    发布日期:  2021-12-09
ZTFLH:  TG139+.8  
基金资助: 国家自然科学基金面上项目(51871039)
通讯作者:  wzhang@dlut.edu.cn   
作者简介:  鞠帅威,2018年6月毕业于大连理工大学金属材料工程专业。现为大连理工大学材料科学与工程学院硕士研究生。目前的主要研究方向为Fe、Co基块体非晶合金。
张伟,大连理工大学材料科学与工程学院教授、博士研究生导师。1983年毕业于大连理工大学金属材料专业,1986年在同大学获铸造专业硕士学位;1998年在日本东北大学获材料加工学博士学位,1998—2004年担任日本科技技术振兴机构研究员;2004—2017年任日本东北大学金属材料研究所副教授、客座教授;2011年任现职。主要研究领域为非晶态合金及其复合材料,纳米合金及磁性材料。
引用本文:    
鞠帅威, 李艳辉, 张伟. 软磁性Co基块体非晶合金的研究进展[J]. 材料导报, 2021, 35(z2): 318-324.
JU Shuaiwei, LI Yanhui, ZHANG Wei. Research Progress in Soft-magnetic Co-based Bulk Metallic Glasses. Materials Reports, 2021, 35(z2): 318-324.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/318
1 Inoue A.Acta Materialia, 2000, 48(1), 279.
2 Wang W.Progress in Materials Science, 2007, 52(4), 540.
3 Inoue A, Takeuchi A.Acta Materialia, 2011, 59(6), 2243.
4 Ogawa Y, Naoe M, Yoshizawa Y, et al.Journal of Magnetism and Magnetic Materials, 2006, 304(2), e675.
5 Hasegawa R, Azuma D.Journal of Magnetism and Magnetic Materials, 2008, 320(20), 2451.
6 刘天豪, 郭胜锋. 材料工程, 2020, 48(11), 46.
7 杨君友, 张同俊, 李星国, 等. 材料导报, 1995(6), 31.
8 Bai H, Mi C. In:Transients of Modern Power Electronics, John Wiley & Sons Ltd, US, 2011, pp. 249.
9 刘君昌, 梅云辉, 陆国权. 材料工程, 2017, 45(5), 127.
10 Itoi T, Inoue A.Materials Transactions JIM, 2000, 9(41), 1256.
11 Koshiba H, Inoue A.Materials Transactions, 2001, 42(12), 2572.
12 Itoi T, Takamizawa T, Kawamura Y, et al.Scripta Materialia, 2001, 45(10), 1131.
13 Taghvaei A H, Stoica M, Prashanth K G, et al.Acta Materialia, 2013, 61(17), 6609.
14 Man Q, Sun H, Dong Y, et al.Journal of Alloys and Compounds, 2010, 504, S132.
15 Bao F, Li Y, Zhu Z, et al.Journal of Iron and Steel Research Internatio-nal, 2021,28, 597.
16 Liang X, Li Y, Bao F, et al. Intermetallics, 2021, 132, 107135.
17 Inoue A, Shen B.Materials Transactions, 2002, 43(5), 1230.
18 Shen B, Chang C, Kubota T, et al.Journal of Applied Physics, 2006, 100(1), 013515.
19 Dong Y, Wang A, Man Q, et al.Intermetallics, 2012, 23, 63.
20 Dong Y, Man Q, Chang C, et al.Journal of Materials Science: Materials in Electronics, 2015, 26(9), 7006.
21 Bie L, Li Q, Cao D, et al.Intermetallics, 2016, 71, 7.
22 Aihemaiti N, Li Q, Li M, et al.Intermetallics, 2020, 123, 106834.
23 Huang D, Li Y, Yang Y, et al. Journal of Alloys and Compounds, 2020, 843, 154862.
24 Inoue A, Koshiba H, Itoi T, et al.Applied Physics Letters, 1998, 73(6), 744.
25 Inoue A, Shen B L, Koshiba H, et al.Acta Materialia, 2004, 52(6), 1631.
26 Inoue A, Shen B, Koshiba H, et al.Nature Materials, 2003, 2(10), 661.
27 Villars P, Calvert L.Pearson's handbook of crystallographic data for intermetallic phases, ASM, US, 1985.
28 Kaban I, Jovari P, Stoica M, et al.Physical Review B, 2009, 79(21), 212201.
29 Di Y, Wang J, Zhu S, et al.Journal of Non-Crystalline Solids, 2018, 483, 118.
30 Poon S J, Shiflet G J, Guo F Q, et al.Journal of Non-Crystalline Solids, 2003, 317(1), 1.
31 袁子洲, 张大鹏, 陆叶, 等. 稀有金属材料与工程, 2009, 38(1), 138.
32 Imafuku M, Sato S, Koshiba H, et al.Materials Transactions JIM, 2000, 41(11), 1526.
33 Zhang W, Jia F, Xie G, et al. Metallurgical & Materials Transactions A, 2010, 41(7), 1685.
34 Busch R, Kim Y J, Johnson W L.Journal of Applied Physics, 1995, 77, 4039.
35 Yang M, Liu X J, Wu Y, et al.Materials Research Letters, 2018, 6(9), 495.
36 Kronmuller H. Journal of Applied Physics, 1981(52), 1859.
37 Bitoh T, Makino A, Inoue A.Journal of Applied Physics, 2006, 99(8), 08F102.
38 Kissinger H E.A Anlytical Chemistry, 1957, 11(29), 1702.
39 Xing D, Huang Y, Shen J, et al.Rare Metal Materials & Engineering, 2007, 36(7), 1181.
40 Bayri N, Kolat V S, Izgi T, et al.Acta Physica Polonica, 2015, 129(1), 84.
41 Greer A L.Nature, 1993, 366(6453), 303.
42 Williams A, Moruzzi V, Malozemoff A, et al.IEEE Transactions on Magnetics, 1983, 19(5), 1983.
43 Fujimori H, Obi Y, Masumoto T, et al.Material Science & Engineering, 1976, 23(2-3), 281.
44 Jergel M, Vlasāk G, Duhaj P.Physica Status Solidi (a), 1989, 111(2), 597.
45 Chang C, Shen B, Inoue A.Applied Physics Letters, 2006, 88(1), 011901.
46 Zhang W, Jia F, Zhang X, et al.Journal of Applied Physics, 2009, 105(5), 1427.
47 Jiang J, Li Q, Duan H, et al.Computational Materials Science, 2017, 130, 76.
48 Wang A, Zhao C, He A, et al.Journal of Alloys and Compounds, 2016, 656, 729.
49 Chikazumi S, Charap S H.Physics of magnetism. John Wiley & Sons, US, 1964.
50 Friedel J. II Nuovo Cimento, 1958, 7, 287.
[1] 马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
[2] 刘子甄, 金欣, 王闻宇, 牛家嵘. 基于分子结构设计的高性能聚酰亚胺的研究进展[J]. 材料导报, 2021, 35(z2): 600-611.
[3] 孙鹏飞, 吕平, 黄微波, 张锐, 方志强, 桑英杰. 喷涂抗爆型聚脲钢筋混凝土板抗爆性能研究[J]. 材料导报, 2021, 35(z2): 642-648.
[4] 姜鹏程, 王周福, 王玺堂, 刘浩, 马妍. 不同气氛下类石墨相氮化碳的合成及热稳定性能[J]. 材料导报, 2021, 35(6): 6048-6053.
[5] 高君华, 黄浩, 曾冲, 郑瑞伦. 孔隙率对传感器多孔电极材料导电性能的影响[J]. 材料导报, 2021, 35(18): 18018-18023.
[6] 王亚楠, 曹凤香, 王永锋, 曹静, 李兆, 吴坤尧. 玻璃纤维增强硼酸酯改性酚醛树脂复合材料的摩擦学性能研究[J]. 材料导报, 2021, 35(18): 18210-18215.
[7] 李过, 孙耀宁, 王国建, 代礼葵. 不同环境因素作用下玻纤/环氧乙烯基酯复合材料的冲蚀行为[J]. 材料导报, 2021, 35(16): 16160-16165.
[8] 林绍铃, 黄初, 赵小敏, 陈国华. 石墨烯/黑磷纳米复合粒子对环氧树脂阻燃与热稳定性能的影响[J]. 材料导报, 2021, 35(10): 10184-10188.
[9] 左文韬, 樊正方, 刘国强, 刘江, 廖成. 电荷传输层和热退火对钙钛矿薄膜电学性能的影响[J]. 材料导报, 2020, 34(Z1): 13-18.
[10] 李红,邢增程,Erika Hodúlová,胡安明,Wolfgang Tillmann. 退火处理工艺在纳米多层膜材料研究中的应用进展[J]. 材料导报, 2020, 34(3): 3099-3105.
[11] 刘亮, 汪志太, 杨伟, 王振军, 蔡长春, 余欢. 铜模喷铸Mg-6Al-1Y合金快冷组织形成及其固溶行为[J]. 材料导报, 2020, 34(20): 20066-20069.
[12] 刘晓燕, 张琪, 高飞龙, 杨西荣, 罗雷, 柳奎君. 复合变形制备超细晶工业纯钛的研究进展[J]. 材料导报, 2020, 34(19): 19111-19116.
[13] 狄淑贤, 赖泳爵, 邱武, 林乃波, 詹达. 基于简单液相法对单层二硒化钨表面电荷掺杂的研究[J]. 材料导报, 2020, 34(12): 12025-12029.
[14] 张春旋, 李艳辉, 李亚楠, 张伟. 铁基FeSiBPCu纳米晶软磁合金粉体的制备及电磁波吸收性能[J]. 材料导报, 2020, 34(10): 10076-10081.
[15] 韩瑞路, 阎红娟. Ti-Si-N纳米多层膜的研究进展[J]. 材料导报, 2019, 33(Z2): 169-174.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed