Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 138-144    
  无机非金属及其复合材料 |
基于分子动力学的泡沫沥青-集料界面黏附性研究
杨健, 郭乃胜, 郭晓阳, 王志臣, 房辰泽, 褚召阳
大连海事大学交通运输工程学院,大连 116026
Adhesion of Foamed Asphalt-Aggregate Interface Based on Molecular Dynamics
YANG Jian, GUO Naisheng, GUO Xiaoyang, WANG Zhichen, FANG Chenze, CHU Zhaoyang
College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China
下载:  全 文 ( PDF ) ( 5346KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了揭示泡沫沥青与集料的界面微观黏附特性,基于分子动力学(MD)模拟方法,采用4组分12分子沥青分子模型并向其中加入水分子来模拟泡沫沥青,分别分析了含水率、温度对泡沫沥青黏聚性的影响以及含水率、集料类型、集料表面潮湿和水分子扩散对泡沫沥青-集料界面黏附性的影响,并应用统计学方法分析了含水率、温度和时长对泡沫沥青中水分子扩散的影响。结果表明:水的加入会增加沥青大分子之间的距离,使沥青分子间作用力减弱,降低泡沫沥青黏性,提高泡沫沥青的玻璃化转变温度;当泡沫沥青含水率(<1%)较低时,泡沫沥青-集料界面黏附性有所增强,当含水率(>1.6%)较高时,水会从泡沫沥青中溢出与集料结合,使沥青-集料界面黏附性降低;集料表面潮湿情况下,碱性集料与泡沫沥青的界面黏附性优于酸性集料与泡沫沥青的界面黏附性,并且随着泡沫沥青中含水率的增加,界面黏附性并不会减弱,反而会得到一定的增强;含水率对水分子扩散的影响无显著性规律,而温度和时长对水分子的扩散具有显著影响,随着时长增加,水分子扩散逐渐减弱,最终达到动态平衡,温度越高,水在沥青中的扩散越快,对泡沫沥青-集料界面黏附性产生不良影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨健
郭乃胜
郭晓阳
王志臣
房辰泽
褚召阳
关键词:  道路工程  泡沫沥青  分子动力学  黏聚性  界面黏附性    
Abstract: To reveal the micro-scale interfacial adhesion properties of foamed asphalt and aggregate, based on molecular dynamics (MD) simulation method, the 4-component 12-molecule asphalt molecular model was employed and water molecules was added into it to simulate foamed asphalt, then the influence of the water content and temperature on the foamed asphalt cohesion was analyzed, also, the effect of water content, aggregate type, aggregate surface humidity and the diffusion of water molecules on the foamed asphalt-aggregate interface adhesion was investigated in this study. The effects of water content, temperature and simulation duration on the diffusion of water molecules in foamed asphalt were analyzed by statistical method. The results showed that the addition of water can increase the distance among asphalt macromolecules, weaken the intermolecular force of asphalt and reduce the viscosity of foamed asphalt. Moreover, the introduction of water can increase the glass transition temperature of the foamed asphalt. When the moisture content (<1%) of the foamed asphalt was relatively low, the foamed asphalt-aggregate interface adhesion was enhanced, additionally, when it was relatively high (>1.6%), the water can overflow from the foamed asphalt and combine with the aggregate, so as to reduce the interface adhesion of foamed asphalt-aggregate. Under the wet condition of the aggregate surface, the interface adhesion between the alkaline aggregate and the foamed asphalt was better than that between the acidic aggregate and the foamed asphalt. Also, with the increase of the moisture content of the foamed asphalt, the interface adhesion cannot be weakened, but it can be enhanced to a certain extent. The moisture content showed no significant effect on the diffusion of water molecules, while the temperature and simulation duration performed an important effect on it. As simulation duration increased, the diffusion of water molecules gradually weakened and finally reached a dynamic equilibrium. The higher the temperature, the faster the diffusion of moisture in the foamed asphalt, which can cause an adverse effect on the foamed asphalt-aggregate interface adhesion.
Key words:  road engineering    foamed asphalt    molecular dynamics    cohesion    interface adhesion
                    发布日期:  2021-12-09
ZTFLH:  U414  
基金资助: 国家自然科学基金(51308084);中央高校基本科研业务费专项资金(3132017029);大连海事大学 “双一流”建设专项(BSCXXM021);大连市科技创新基金项目(2020JJ26SN062)
通讯作者:  naishengguo@126.com   
作者简介:  杨健,大连海事大学硕士研究生,在郭乃胜教授的指导下进行研究。目前主要从事泡沫沥青与集料微观作用机理研究。
郭乃胜,教授,博士研究生导师,博士,博士后。现任大连海事大学交通运输工程学院教授。研究方向为沥青与沥青混合料,近年来在国内外学术期刊发表学术论文 90 余篇,其中 SCI、EI 检索 50 余篇。
引用本文:    
杨健, 郭乃胜, 郭晓阳, 王志臣, 房辰泽, 褚召阳. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(z2): 138-144.
YANG Jian, GUO Naisheng, GUO Xiaoyang, WANG Zhichen, FANG Chenze, CHU Zhaoyang. Adhesion of Foamed Asphalt-Aggregate Interface Based on Molecular Dynamics. Materials Reports, 2021, 35(z2): 138-144.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/138
1 韦武举,郑炳锋,韩超,等. 公路, 2017, 62(02), 200.
2 Liu S, Zhou S, Peng A. Journal of Cleaner Production. 2020, 277, 123334.
3 Bairgi B K, Tarefder R A. International Journal of Pavement Research and Technology, 2021, 14(1), 13.
4 Li D D, Greenfield M L. Fuel, 2014, 115, 347.
5 Sun W, Wang H. Applied Surface Science, 2020, 510, 145435.
6 Guo F, Zhang J, Pei J, et al. Construction and Building Materials, 2020, 252, 118956.
7 Guo F, Zhang J, Pei J, et al. Journal of Molecular Modeling, 2019, 25(12), 365.
8 Xu G, Wang H. Fuel, 2017, 188.
9 Liu J, Yu B, Hong Q. Construction and Building Materials, 2020, 255, 119332.
10 He L, Li G, Lv S, et al. Construction and Building Materials. 2020, 254, 119225.
11 Du Z, Zhu X. Transportation Research Record: Journal of the Transportation Research Board, 2019, 2673(4), 500.
12 陈桥,虞浩,陈东风,等. 河南科学, 2018, 36(3), 349.
13 崔亚楠,李雪杉,张淑艳. 建筑材料学报, 2021, 24(5), 1105.
14 韦万峰. 温拌泡沫沥青发泡特性及混合料路用性能研究. 硕士学位论文,重庆交通大学, 2018.
15 李根泽. 基于分子模拟技术的路用沥青感温性研究. 硕士学位论文, 吉林大学, 2019.
16 刘圣洁,谢政专,彭爱红. 深圳大学学报(理工版), 2021, 38(2), 163.
17 Liu S, Zhou S, Peng A. Journal of Cleaner Production, 2020, 277, 123334.
18 郭猛. 沥青与矿料界面作用机理及多尺度评价方法研究. 博士学位论文, 哈尔滨工业大学, 2016.
19 Xu G, Wang H. Computational Materials Science, 2016, 112, 161.
20 王鹏. 沥青与集料界面的粘附性能研究. 硕士学位论文, 华南理工大学, 2017.
21 Khan A, Redelius P, Kringos N. Construction and Building Materials, 2016, 125, 1005.
22 Cala A, Caro S, Lleras M, et al. Construction and Building Materials, 2019, 216, 661.
23 邓乃铭. 基于泡沫沥青温拌再生沥青混合料基体的半柔性路面路用性能研究. 硕士学位论文,广州大学, 2020.
24 魏建明. 沥青、集料的表面自由能及水分在沥青中的扩散研究. 博士学位论文, 中国石油大学, 2008.
25 Dos Santos S, Partl M N, Poulikakos L D. Construction and Building Materials, 2014, 71, 618.
26 Hou Y, Wang L, Wang D, et al. Applied Sciences-Basel, DOI:10.3390/app7080770.
[1] 戴文亭, 刘丹丹, 郭威, 李颖松, 安胤. 冻融循环条件下硅烷偶联剂改性泡沫沥青混合料的损伤特性[J]. 材料导报, 2021, 35(Z1): 264-268.
[2] 杨进波, 赵钲洋, 尹航. 基于分子动力学的C-S-H凝胶性能研究进展[J]. 材料导报, 2021, 35(5): 5095-5101.
[3] 张晓博, 刘承军, 姜茂发. 分子动力学模拟在冶金熔渣中的应用进展[J]. 材料导报, 2021, 35(21): 21099-21104.
[4] 刘冬梅, 张典, 彭艳周, 张亚利, 姚惠芹. 柠檬酸钠对半水石膏不同晶面结晶习性及力学性能的影响[J]. 材料导报, 2021, 35(18): 18052-18058.
[5] 范世平, 朱洪洲. 细粒式沥青混合料断裂愈合预估模型[J]. 材料导报, 2021, 35(18): 18090-18095.
[6] 裴培, 彭勇波. 基于分子动力学的磁流变液微观结构演化模拟与动态聚合分析[J]. 材料导报, 2021, 35(12): 12001-12007.
[7] 寇佩佩, 冯瑞成, 李海燕, 李龙龙. 晶向和温度对含孔洞单晶TiAl-Nb合金断裂行为的影响[J]. 材料导报, 2021, 35(10): 10114-10119.
[8] 柴金玲, 栗威. 基于GTM的沥青混合料配合比设计方法试验研究[J]. 材料导报, 2020, 34(Z2): 283-287.
[9] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[10] 丛卓红, 陈恒达, 郑南翔, 周晚君. 水泥混凝土路面纹理的研究进展[J]. 材料导报, 2020, 34(9): 9110-9116.
[11] 张勤玲, 黄志义. FTIR分峰拟合法定量分析沥青胶浆在含盐高温高湿环境中的结构变化[J]. 材料导报, 2020, 34(8): 8083-8089.
[12] 林铁贵, 张玉芬. 晶格畸变对VO2相变温度的影响[J]. 材料导报, 2020, 34(6): 6057-6061.
[13] 王晴, 康升荣, 吴丽梅, 张强, 丁兆洋. 地聚合物凝胶结构建模及分子动力学模拟[J]. 材料导报, 2020, 34(4): 4056-4061.
[14] 刘涛, 郭乃胜, 谭忆秋, 尤占平, 金鑫. 路用相变材料研究现状和发展趋势[J]. 材料导报, 2020, 34(23): 23179-23189.
[15] 李少杰, 闫军, 杜仕国, 鲁彦玲, 蔡军锋. 聚脲弹性体微相分离研究及主要进展[J]. 材料导报, 2020, 34(21): 21205-21210.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed