Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 13-17    
  无机非金属及其复合材料 |
高荧光量子产率的二硫化钼量子点制备及荧光性能研究
韦亦泠1,2, 邓文江1,2, 金彩虹1,2, 李慧1,2, 王传明1,2, 孟铁宏1,2, 张文娟3, 赵鸿宾1,2, 帅光平1,2, 杨政敏1,2, 李春荣1,2, 胡先运1,2,3,4
1 黔南民族医学高等专科学校基础医学部,都匀 558000
2 黔南州民族药纳米医药协同创新中心,都匀 558000
3 黔南民族医学高等专科学校附属医院,都匀 558000
4 贵州省中国科学院天然产物化学重点实验室,贵阳 550014
Preparation and Fluorescent Properties of Molybdenum Disulfide Quantum Dots With High Fluorescence Quantum Yield
WEI Yiling1,2, DENG Wenjiang1,2,JIN Caihong1,2, LI Hui1,2,WANG Chuanming1,2,MENG Tiehong1,2, ZHANG Wenjuan3, ZHAO Hongbin1,2, SHUAI Guangping1,2, YANG Zhengmin1,2, LI Chunrong1,2, HU Xianyun1,2,3,4
1 Qiannan Medical College for Nationalities,Duyun 558000, China
2 The Collaborative Innovation Center of Qiannan State for Ethnic and Nano Medicine, Duyun 558000, China
3 Affiliated Hospital of Qiannan Medical for Nationalities, Duyun 558000, China
4 The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences,Guiyang 550014, China
下载:  全 文 ( PDF ) ( 4144KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二硫化钼量子点(MoS2 QDs)具有优良物理、化学等特性,在催化、荧光成像和荧光传感及生物成像等方面具有潜在的应用前景,然而其制备方法及量子产率仍有改进空间。本工作以钼酸钠提供钼源,谷胱甘肽提供硫源,通过“自下而上”一步水热法制备MoS2 QDs,并以其荧光强度作为指标,采用单因素分析,优化MoS2 QDs制备条件中的钼源与硫源比例、pH值、反应时间、反应温度。结果表明,最佳钼源与硫源质量比例为1∶3.5、最佳pH值为4-8之间、反应时间18 h、反应温度210 ℃。采用正交试验的方法,优化出MoS2 QDs的最佳制备条件为:反应时间30 h、反应温度220 ℃、钼源与硫源比例为1∶3.5、pH值为3,荧光量子产率高达21%。所制备MoS2 QDs的粒径4.0±0.35 nm,且单分散,富含氨基和羧基官能团,紫外吸收峰336 nm;发射波长为424 nm;半峰宽79 nm。可为MoS2 QDs在高灵敏的离子、生物分子检测以及低毒的细胞成像打下基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韦亦泠
邓文江
金彩虹
李慧
王传明
孟铁宏
张文娟
赵鸿宾
帅光平
杨政敏
李春荣
胡先运
关键词:  二硫化钼量子点  条件优化  制备方法  荧光性能  荧光量子产率    
Abstract: Molybdenum disulfide quantum dots (MoS2 QDs) have excellent physical and chemical properties, which have potential great applications in catalysis, fluorescent imaging, fluorescent sensing and biological imaging, etc. However, its preparation methods and quantum yield still need further improvement. In this paper, MoS2 QDs were prepared by using sodium molybdate as molybdenum source and glutathione as sulfur source by one pot “bottom-up” hydrothermal approach, and its fluorescent intensity was used as the monitoring index. The single factor analysis was adopted to optimize the proportion of molybdenum and sulfur source, pH value, reaction time and reaction temperature.The results showed that the best molybdenum and sulfur source ratio was 1∶3.5, the best pH value was between 4-8, the best reaction time was 30 h, the best reaction temperature was 210 ℃. The reaction conditions were also optimized by orthogonal experiment, the optimum reaction conditions was that reaction time was 30 h, reaction temperature was 220 ℃, molybdenum and sulfur source ratio was 1∶3.5, pH value was 3, the best fluorescent quantum yield of MoS2 QDs was about 21%. The MoS2 QDs had mono- disperse, those particle size was (4.0 ± 0.35) nm, and being rich in a mino and carboxyl functional groups. Its UV absorption peak was 336 nm, FL emission wavelength was 424 nm, and full width at half maxima was 79 nm. It can lay a foundation for the highly sensitive ion and biomolecular detection of MoS2 QDs and low toxicity cell imaging.
Key words:  molybdenum disulfide quantum dots    condition optimization    preparation method    fluorescent properties    fluorescence quantum yield
                    发布日期:  2021-12-09
ZTFLH:  TN304.2  
  TQ422  
基金资助: 国家自然科学基金项目(81860317);贵州省自然科学基金(黔科合支撑〔2019〕2821号;黔科合基础〔2016〕1136号;黔科合基础〔2019〕1301号);黔南科技计划项目(黔南州科合社字〔2016〕12号;黔南科合社字〔2014〕8号);贵州省卫生厅校联合基金(gzwkj2012-2-017)以及黔南民族医专科研基金(qnyz201947;qnyz201921;qnyz201801;qnyz201807;qnyz201843)
通讯作者:  huxianyun2004@163.com   
作者简介:  韦亦泠,硕士,讲师,2019年于福建师范大学获得硕士学位,主要从事细胞生物学、细胞信号通路、生物活性物质方面的研究。
胡先运,博士,教授,2018年于东南大学获得博士学位,主要从事民族药纳米医药、纳米材料的研究。
邓文江,主要研究新型荧光量子点、体内药物代谢、化合物的提取、分离、检测等方面。
金彩虹,主要研究药物检测、荧光量子点、茶叶工艺优化、化合物的组成等方面。
引用本文:    
韦亦泠, 邓文江, 金彩虹, 李慧, 王传明, 孟铁宏, 张文娟, 赵鸿宾, 帅光平, 杨政敏, 李春荣, 胡先运. 高荧光量子产率的二硫化钼量子点制备及荧光性能研究[J]. 材料导报, 2021, 35(z2): 13-17.
WEI Yiling, DENG Wenjiang,JIN Caihong, LI Hui,WANG Chuanming,MENG Tiehong, ZHANG Wenjuan, ZHAO Hongbin, SHUAI Guangping, YANG Zhengmin, LI Chunrong, HU Xianyun. Preparation and Fluorescent Properties of Molybdenum Disulfide Quantum Dots With High Fluorescence Quantum Yield. Materials Reports, 2021, 35(z2): 13-17.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/13
1 Wang H T, Lu Z Y, Xu S C, et al. PNAS,2013,110(49), 19701.
2 Stephenson T, Li Z, Olsen B, et al. Energy & Environmental Science, 2014, 7(1), 209.
3 Dai W H, Dong H F, Fugetsu B, et al. Small, 2015, 11(33), 4158.
4 Jaramillo T F, Jorgensen K P, Bonde J, et al. Science, 2007, 317(5834), 100.
5 Wi S J, Kim H S, Chen M K, et al. ACS Nano, 2014, 8(5), 5270.
6 Tang H J, Wang J Y, Yin H J, et al. Advanced Materials, 2015,27(6), 1117.
7 Rao C N R, Matte H S S, Maitra U. Angemandte Chemie International Edition, 2013, 52(50), 13162.
8 Huang X, Zeng Z Y, Zhang H M,et al. Chemical Society Reviews, 2013, 42(5),1934.
9 Jia J Y, Jeon S, Jeon J, et al. Small, 2018 14(9), 1703065.
10 姜相宇, 付华, 张敏, 等. 分析化学. 2018, 46(7), 1077.
11 李菁菁, 郁莉婷, 万法广, 等.化学试剂,2018, 40(12), 1.
12 Zhang X, Lai Z C, Liu Z D, et al. Angemandte Chemie International Edition, 2015, 54(18), 5425.
13 Stengl V, Henych J. Nanoscale,2013, 5(8), 3387.
14 Deepesh G, Dijo D, Manikoth M. ACS Nano, 2014, 8(5), 5297.
15 Mukhcrjee S, Maiti R, Katiyar A K, et al. Scientific Reports, 2016, 6, 29016.
16 Li H, Wu J, Yin Z, Zhang H. Accounts of Chemical Researth, 2014, 47(4), 1067.
17 Qiao W, Yan S M, Song X Y, et al. Applied Surface Science, 2015, 35(9), 130.
18 Gu W, Yan Y H, Cao X N, et al. Journal of Materials Chemistry B, 2016, 4(1), 27.
19 Gao W Y, Wang M Q, Ran C X, et al. Chenical Commuaications, 2015,51(9), 1709.
20 Rren X P, Pang L Q, Zhang Y X, et al. Journal of Materials Chemistry A, 2015, 3(20): 10693.
21 Yu W L, Zhou J J, Zhang Y Q, et al. Nanoscale ,2016, 8(5), 2720.
22 Zhao X, He D W, Wang Y S, et al. Chinese Physics B, 2017, 26(6), 066102.
23 Niu Y, Jiao W C, Wang R G, et al. Journal of Materials Chemistry A, 2016, 4(21), 8198.
24 Gan Z X, Gui Q F, Shan Y, et al. Journal of Applied Physics, 2016, 120(10), 104503.
25 Chen J, Li Y, Lv K, et al. Sensors and Actuators B Chemical,2016, 22(4), 298.
26 Lv Z, Mahmood N, Tahir M, et al. Nanoscale, 2016, 8(43), 18250.
27 Hariharan S, Karthikeyan B. RSC Advances, 2016, 6(104), 101770.
28 Gu W, Yan Y H, Zhang C L, et al. ACS Applied Materials & Interfaces, 2016, 8(18), 11272.
29 Zhang S, Jia X, Wang E. Nanoscale, 2016, 8(33), 15152.
30 Kukkar M, Singh S, Kumar N, et al. Microchimica Acta, 2017,184(12), 4647.
31 Zhou K, Zhang Y, Xia Z N, et al. Nanotechnology, 2016, 27(27), 275101.
32 Wang J P, Tan X X, Pang X J, et al. ACS Applied Materials & Interfaces, 2016, 8 (37), 24331.
33 Ma J, Yu H H, Jiang X, et al. Sensors and Actuators B Chem, 2019, 28(1), 989.
34 Wang Y, Ni Y N. Analytical Chemistry, 2014, 86(15), 7463.
[1] 田春, 唐元洪. 硅纳米管的各种制备方法[J]. 材料导报, 2021, 35(z2): 38-45.
[2] 董宏伟, 张冠星, 董显, 薛行雁, 沈元勋. 纳米银焊膏的研究进展[J]. 材料导报, 2021, 35(z2): 341-345.
[3] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[4] 王浩, 宗楠, 陈中正, 薄勇, 彭钦军. 富勒烯制备与提纯方法研究进展[J]. 材料导报, 2021, 35(Z1): 71-77.
[5] 马力, 赵赫, 昝宇宁, 肖伯律, 王东, 王全兆, 王文广. 耐热铝合金及其复合材料的制备、应用和强化机制[J]. 材料导报, 2021, 35(Z1): 414-420.
[6] 解琳, 何文涛, 高京. 聚膦腈微纳米材料的制备及应用[J]. 材料导报, 2021, 35(Z1): 578-585.
[7] 申冰磊, 王中跃, 于春雷, 王欣, 王世凯, 胡丽丽, 韦玮. 稀土掺杂钇铝石榴石晶体激光光纤的研究进展[J]. 材料导报, 2021, 35(9): 9123-9132.
[8] 张仁耀, 郭俊梅, 闻明, 管伟明. 贵金属钌的制备、性能及应用研究进展[J]. 材料导报, 2021, 35(21): 21243-21248.
[9] 陈小明, 伏利, 苏建灏, 刘伟, 李育洛, 毛鹏展, 张磊, 惠希东. AlON陶瓷的研究现状与发展趋势[J]. 材料导报, 2020, 34(Z2): 117-122.
[10] 魏声培. 分子印迹型二氧化钛的制备方法研究进展[J]. 材料导报, 2020, 34(Z1): 22-25.
[11] 杨振楠, 刘芳, 李朝龙, 郑超, 曾有福, 郑鑫, 罗梅, 史浩飞. 核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2020, 34(7): 7061-7070.
[12] 李焕焕, 张东东, 许子昂, 董瑶, 赵义平, 陈莉. 荧光碳点改性无纺布的制备及在汞(Ⅱ)检测中的应用[J]. 材料导报, 2020, 34(2): 2163-2168.
[13] 黄思睿, 伍昊, 朱和国. 共晶高熵合金的研究进展[J]. 材料导报, 2020, 34(17): 17077-17081.
[14] 张小艳, 孙元, 李慧, 陈振斌. 智能印迹聚合物研究进展及发展瓶颈[J]. 材料导报, 2020, 34(15): 15163-15173.
[15] 孔令宇, 黄慧娟, 杨喜, 马建锋, 尚莉莉, 刘杏娥. 生物质基炭气凝胶复合材料在超级电容器中应用的研究进展[J]. 材料导报, 2019, 33(Z2): 32-37.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed