Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 654-661    
  高分子与聚合物基复合材料 |
四大类外掺材料对聚合物改性水泥基材料性能影响的研究进展
李刊1, 魏智强1,2, 乔宏霞1,3, 路承功1, 郭健1, 乔国斌1
1 兰州理工大学土木工程学院,兰州 730050
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
3 兰州理工大学西部土木工程防灾减灾教育部工程研究中心,兰州 730050
Research Progress of the Influence of Four Kinds of Admixtures on the Properties of Polymer Cement-based Materials
LI Kan1, WEI Zhiqiang1,2, QIAO Hongxia1,3, LU Chenggong1, GUO Jian1, QIAO Guobin1
1 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
3 Western Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 6223KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚合物改性水泥基材料作为一种典型的有机-无机复合材料,具有强度高、韧性高、粘结性能好、耐久性好等优点,在结构修补、防水、防腐、道路路面材料等领域得到广泛应用和迅速发展。今后聚合物水泥基复合材料将会在目前的基础上得到更多应用,并在力求满足应用性能需求和降低成本的推动下得到相应发展。
目前聚合物水泥基复合材料虽然得到了广泛应用,但还存在一定的问题,如聚合物水泥基复合材料采用单一聚合物改性,整体性能还存在一定的不足,故今后复合改性方法将逐步得到更为广泛的应用。多种方式复合改性可以弥补聚合物单一改性的不足,如利用矿物掺合料、外加剂、纤维及纳米四大类材料与聚合物复合改性水泥基材料,都是值得继续深入研究的发展方向,并且通过复合改性的方法将会使得聚合物水泥基材料的应用范围进一步扩展。
基于以上问题,学者进一步研发了以上四大类外掺材料对聚合物水泥基材料性能的影响。研究结果表明:矿物掺合料改性聚合物水泥基材料可以取得更为良好的工作性能、力学性能及耐久性能,并且显著改善其微观结构。在聚合物水泥基材料中掺入各种外加剂,可以改善其工作性能,提高其强度,优化其孔隙结构;并且外加剂可以在一定程度上优化胶凝材料的组成和结构,使聚合物水泥基材料的耐久性有很大的提高。利用纤维的增强、增韧效应,可以克服单掺聚合物时水泥基材料的抗拉强度、抗裂性能差和易塑性干缩开裂等缺点,故采用纤维和聚合物复合改性水泥基材料具有优良的性能,是水泥基复合材料发展的前沿及重要方向之一。将纳米材料引入聚合物改性水泥基材料中,可以显著提高其早期水化速率,促进聚合物成膜,优化孔结构及改善界面过渡区结构,因而可进一步改善聚合物水泥基材料的强度及耐久性。
本文对国内外研究矿物掺合料、外加剂、纤维和纳米四大类材料改性聚合物水泥基材料性能进行了综述,分析四大类材料现有研究中的不足,并提出了未来需要解决的问题,以期为聚合物水泥基材料在实际工程中的应用提供更多的可能性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李刊
魏智强
乔宏霞
路承功
郭健
乔国斌
关键词:  聚合物水泥基材料  矿物掺合料  外加剂  纤维  纳米材料    
Abstract: As a typical organic-inorganic composite, polymer-modified cement-based materials has the advantages of high strength, high toughness, good bonding performance and durability. It has been widely used and rapidly developed in the fields of structural repair, waterproof, anticorrosive, and road surface materials. In the future, polymer cement-based composite will be more widely used on the basis of the present, and will be developed relevantly under the promotion of meet application performance requirements and reduce costs.
At present, although polymer cement-based composite has been widely applied, there are still some problems to be solved. For example, if the polymer cement-based composite is modified by the polymer only, its overall properties are still insufficient. In the future, compound modification methods will gradually be more widely used. Compound modification by a variety of ways can make up for the shortage of merely polymer modification. For example, using the mineral admixtures, addition agent, fibers and nano-materials composited by polymer to modify cement-based materials is worthy of further research. Even by means of compound modification, the application range of polymer cement based materials will be further expanded.
Based on problems mentioned, researchers have further studied the influence of the aforementioned four materials on the properties of polymer cement-based materials. The results show that the polymer cement based materials modified by mineral admixtures can obtain better working performance, mechanical properties and durability, and significantly improve their microstructure. Adding various addition agent into polymer cement base materials can improve its working performance, strength and pore structure. Moreover, it can optimize the composition and structure of cementitious materials to some extent, so that the durability of polymer cement-based materials can be greatly improved. With the enhancement and toughening effect of fiber, the disadvantages of cement base materials modified with polymer merely, such as poor tensile strength, poor crack resistance and plastic dry shrinkage cracking can be overcome. Therefore, fiber and polymer used for compound modification of cement-based materials have excellent properties, which is one of the forefront and important directions in the development of cement-based materials. Adding nano materials into polymer cement-based materials can significantly improve its early hydration rate, promote polymer film formation, optimize pore structure and improve interfacial transition zone structure, thus further improving the strength and durability of polymer cement-based materials.
In this paper, the properties of polymer cement-based materials modified by mineral admixtures, addition agent, fibers and nano materials are reviewed, the shortcomings of the existing research are analyzed and the problems that need to be solved are put forward, thus providing more possibilities for the application of polymer cement-based materials in practical engineering.
Key words:  polymer cement-based materials    mineral admixtures    addition agent    fibers    nano materials
                    发布日期:  2021-07-16
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51168031;51868044);硅酸盐建筑材料国家重点实验室(武汉理工大学)开放基金(SYSJJ2018-20)
通讯作者:  Hongxia_Qiao@163.com   
作者简介:  李刊,博士研究生,2017年9月至今在兰州理工大学攻读工学博士学位,目前主要从事纳米水泥基复合材料研究。乔宏霞,兰州理工大学教授,博士研究生导师,中国科学院青海盐湖研究所博士后,主要从事混凝土耐久性研究。近年来多次参加国内外国际学术会议,在国内外学术期刊发表论文几十余篇,其中SCI/EI收录30余篇。
引用本文:    
李刊, 魏智强, 乔宏霞, 路承功, 郭健, 乔国斌. 四大类外掺材料对聚合物改性水泥基材料性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 654-661.
LI Kan, WEI Zhiqiang, QIAO Hongxia, LU Chenggong, GUO Jian, QIAO Guobin. Research Progress of the Influence of Four Kinds of Admixtures on the Properties of Polymer Cement-based Materials. Materials Reports, 2021, 35(Z1): 654-661.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/654
1 衡艳阳, 赵文杰.硅酸盐通报, 2014, 33(2),365.
2 徐峰, 刘林军.聚合物水泥基建材与应用, 中国建筑工业出版社, 2010.
3 葛序尧.聚合物改性高强水泥砂浆的研究. 硕士学位论文, 湖南大学, 2008.
4 胡红梅, 马保国.混凝土矿物掺合料,中国电力出版社, 2016.
5 钟世云, 向克勤.新型建筑材料,2007(1), 44.
6 刘志勇.化学建材, 1999(3), 198.
7 韩雨生, 李娜, 韩微微.路基工程, 2017(5),119.
8 葛兆明, 佘成行, 魏群, 等. 混凝土外加剂, 化学工业出版社, 2012.
9 张国防, 王培铭, 吴建国, 等.中国水泥, 2004(11),111.
10 罗立峰, 黄培彦, 王秉纲.长安大学学报(自然科学版),2002, 22(3), 25.
11 詹镇峰, 刘志勇.化学建材, 2003, 19(6), 55.
12 任传尧, 钱晓倩, 方明晖.混凝土, 2010(12),105.
13 牛荻涛, 姜磊, 白敏.土木建筑与环境工程, 2012(4),80.
14 赵帅.聚丙烯纤维增强水泥复合材料的性能与机理研究.硕士学位论文,济南大学,2009.
15 侯学彪, 黄丹, 王委.混凝土, 2013(3), 5.
16 Feldman D.Journal of Macromolecular Science, Part A, 2014, 51(3), 203.
17 Remache L, Djermane N.Key Engineering Materials, 2017, 733, 71.
18 Almeida A E F S, Sichieri E P.Building and Environment, 2007, 42(7), 2645.
19 Almeida A E F S, Sichieri E P. Construction and Building Materials, 2006, 20(10), 882.
20 Gao J M, Qian C X, Wang B, et al.Cement and Concrete Research, 2002, 32(1), 41.
21 朱明胜.水泥技术, 2011(3),31.
22 Niaki M H, Fereidoon A, Ahangari M G.Bulletin of Materials Science, 2018, 41(3), 69.
23 Menhosh A A, Wang Y, Wang Y, et al. Construction and Building Materials, 2018, 172, 41.
24 崔弋, 李秋义, 汲博生.新型建筑材料, 2013, 40(4), 19.
25 Rossignolo J A.Construction and Building Materials, 2009, 23(2), 817.
26 冷政, 李曦, 李党义.新型建筑材料,2014,41(4), 38.
27 Çolak A.Cement and Concrete Research, 2005, 35(8), 1510.
28 彭勃, 葛序尧, 单远铭. 建筑结构, 2009, 39(1),102.
29 Ray I, Gupta A P, Biswas M.Cement and Concrete Composites, 1995, 17(1), 9.
30 Chmielewska B, Czarnecki L, Sustersic J, et al.Cement and Concrete Composites, 2006, 28(9), 803.
31 范树景, 王培铭.建筑材料学报,2016,19(1),1.
32 Fu X, Chung D D L.Cement and Concrete Research, 1996, 26(7), 985.
33 Fu X, Chung D D L.Cement and Concrete Research, 1996, 26(1), 69.
34 王培铭, 张国防, 张永明.新型建筑材料, 2005(1), 32.
35 王培铭.硅酸盐通报, 2005, 24(5), 136.
36 Lee B J, Kim Y Y.International Journal of Concrete Structures and Mate-rials, 2018, 12(1), 23.
37 刘利, 徐玲玲, 花海东, 等.新型建筑材料, 2006(12), 46.
38 王培铭, 赵国荣, 张国防.硅酸盐学报,2018, 46(2),256.
39 宋云祥,杨静,王建强.华北水利水电学院学报, 2012, 33(6), 18.
40 朱亚阁, 李碧雄, 蒲养林, 等. 四川大学学报(工程科学版), 2016, 48(S1), 128.
41 郑小军. 聚合物复合纤维混凝土的性能研究.硕士学位论文, 宁夏大学, 2016.
42 Petruška O, Zajac J, Molnár V, et al. Materials, 2019, 12(12), 1917.
43 梅迎军, 王培铭, 马一平. 建筑材料学报,2006(3), 260.
44 赵翔. 钢纤维聚合物水泥混凝土物理力学性能研究.硕士学位论文, 重庆交通大学, 2013.
45 刘全庆, 李光辉, 宋云祥, 等.建材世界, 2014, 35(6), 32.
46 范树景, 王培铭. 建筑材料学报, 2017, 20(1),118.
47 周述光, 陈新孝, 徐鹏. 新型建筑材料, 2008,35(12),13.
48 高峰. 基于修补加固的聚合物纤维砂浆研究. 硕士学位论文, 南昌大学, 2015
49 裴少丽. 改性纤维增强聚合物水泥砂浆的制备与性能试验研究.硕士学位论文,长沙理工大学, 2014
50 Hassani N M, Fereidoon A, Ghorbanzadeh A M.Composite Structures, 2018, 191, 231.
51 杨潮军. 纳米改性聚合物水泥基材料的性能和修复试验研究.硕士学位论文,浙江大学, 2016.
52 孟睿覃. 不同温度下纳米SiO2对PMC材料性能和微结构的影响研究.硕士学位论文, 浙江大学, 2014.
53 王茹,张绍康,王高勇.材料导报:研究篇, 2017, 31(12), 69.
54 周立民, 王冲, 李东林, 等. 深圳大学学报:理工版,2014, 31(3), 227.
55 Soliman E M, Kandil U F, Taha M M R.Materials and structures, 2012, 45(6), 803.
56 Daghash S M, Soliman E M, Kandil U F, et al.International Journal of Concrete Structures and Materials, 2016, 10(4), 539.
[1] 刘静, 高正阳, 王杰, 陈霈儒, 杨璐冰. 共掺杂改性TiO2光催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 42-47.
[2] 张勇, 郝永刚. 石墨烯及氧化石墨烯在纺织领域的应用[J]. 材料导报, 2021, 35(Z1): 78-82.
[3] 武梓诺, 贾泓钰, 张宇晴, 陈旸. 口腔托槽用ZTA陶瓷材料凝胶注模成型工艺的研究[J]. 材料导报, 2021, 35(Z1): 100-103.
[4] 周横一, 钱春香, 陈燕强. GRC制品抗泛碱性能的提升及机理[J]. 材料导报, 2021, 35(Z1): 225-231.
[5] 解琳, 何文涛, 高京. 聚膦腈微纳米材料的制备及应用[J]. 材料导报, 2021, 35(Z1): 578-585.
[6] 岳青, 王绍德, 徐飞, 刘涛. 静电纺丝技术及其在各领域中的应用[J]. 材料导报, 2021, 35(Z1): 594-599.
[7] 丁叁叁, 刘克健. 高速列车用碳纤维复合材料结构损伤修复门槛值研究[J]. 材料导报, 2021, 35(Z1): 613-616.
[8] 牛建刚, 许文明, 梁剑. 受压区局部约束塑钢纤维轻骨料混凝土梁的抗弯性能[J]. 材料导报, 2021, 35(8): 8056-8063.
[9] 张金才, 王志英, 程芳琴. 固废基无机纤维的研究进展[J]. 材料导报, 2021, 35(7): 7019-7026.
[10] 李登华, 吕春祥, 杨禹, 王立娜, 崔东霞, 刘哲, 郭赢赢. 碳纤维微观结构表征:小角X射线散射[J]. 材料导报, 2021, 35(7): 7077-7086.
[11] 杨世玉, 赵人达, 曾宪帅, 贾文涛, 靳贺松, 李福海. 用自然纤维增强地聚物材料:综述[J]. 材料导报, 2021, 35(7): 7107-7113.
[12] 吴金荣, 崔善成, 李飞, 洪荣宝. 煤矸石粉/聚酯纤维沥青混合料低温抗裂性研究[J]. 材料导报, 2021, 35(6): 6078-6085.
[13] 陶百福, 王志辉, 郭瑞丽. 基材亲疏水性能对EVOH/LIS复合吸附剂成型结构及提锂性能的影响[J]. 材料导报, 2021, 35(6): 6180-6188.
[14] 栾玉, 任丹, 徐丹. 横晶层对天然纤维增强聚合物复合材料力学性能影响的研究进展[J]. 材料导报, 2021, 35(5): 5195-5198.
[15] 聂洁, 李传习, 钱国平, 潘仁胜, 裴必达, 邓帅. 钢纤维形状与掺量对UHPC施工及力学特性的影响[J]. 材料导报, 2021, 35(4): 4042-4052.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed