Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 541-547    
  高分子与聚合物基复合材料 |
尿素醇解法制备甘油碳酸酯催化剂的研究进展
王凯, 冯东, 赵文波
昆明理工大学化学工程学院,昆明 650500
Research Progress of Catalysts for Preparation of Glycerol Carbonate by Urea Alcoholysis
WANG Kai, FENG Dong, ZHAO Wenbo
Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
下载:  全 文 ( PDF ) ( 3119KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 甘油碳酸酯(Glycerol carbonate, GC)是一种重要的化工新型材料,在气体分离膜、聚氨酯泡沫、油漆涂料和洗涤剂等方面应用广泛。利用甘油和尿素两种廉价易得的原料来制备GC,不仅可以有效解决生物柴油生产过程中大量甘油副产物难处置的问题,同时产生的氨气可与CO2反应生产尿素,有效实现二氧化碳的化学固定,是一种绿色经济且环境友好的反应工艺。本文对尿素醇解法制备GC的催化剂进行了系统综述,将涉及到的催化剂进行了归纳,如锌基催化剂、镁基催化剂、钨基催化剂、功能化离子液体催化剂和其他催化剂,并着重对这几类催化剂的制备方法、催化效率和相应的反应机理进行了总结,以期为新型高效催化剂的制备提供参考。最后,对尿素醇解工艺的发展及新型催化剂的制备提出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王凯
冯东
赵文波
关键词:  碳酸甘油酯  甘油  尿素  二氧化碳  催化剂    
Abstract: Glycerol carbonate (GC) is an important new chemical material. It is widely used in gas separation membrane, polyurethane foam, paint, detergent, etc. Using the cheap glycerol and urea as raw materials to prepare GC can effectively solve the touchy by-products of biodiesel. Besides that, the ammonia produced by the reaction can be also used to produce urea with CO2, and can effectively realize the chemical fixation of CO2, which is a green, economical and environmental friendly reaction process. In this paper, the catalysts for the preparation of glycerol carbonate by alcoholysis of urea was reviewed systematically. The relevant catalysts were summarized into zinc based catalysts, magnesium based catalysts, tungsten based catalysts, functionalized ionic liquid catalysts and other catalysts. In addition, the preparation methods, catalytic efficiency and corresponding reaction mechanism were summarized. Hoping to provide references for the researchers toward preparing some novel and high efficient catalysts. Finally, the development of urea alcoholysis process and the preparation of new catalysts were prospected.
Key words:  glycerol carbonate    glycerol    urea    carbon dioxide    catalysts
                    发布日期:  2021-07-16
ZTFLH:  TQ225.52  
基金资助: 国家自然科学基金(21666011)
通讯作者:  fdryan@kust.edu.cn   
作者简介:  王凯,2019年毕业于青岛科技大学,获得学士学位,2020年10月进入昆明理工大学攻读硕士学位,研究方向为有机碳酸脂的合成及催化剂的制备。冯东,昆明理工大学化学工程学院讲师,硕士生研究生导师。2020年6月毕业于四川大学高分子材料工程国家重点实验室,获高分子科学与工程专业工学博士学位。同年加入昆明理工大学化学工程学院工作,主要从事高性能高分子基微孔发泡材料与多功能泡沫材料成型加工与应用等方面的科研工作,重点研究功能性高分子基复合材料与结构复合材料的设计与制备。以第一作者或通讯作者身份发表SCI、EI论文20余篇,获国家授权发明专利3项。
引用本文:    
王凯, 冯东, 赵文波. 尿素醇解法制备甘油碳酸酯催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 541-547.
WANG Kai, FENG Dong, ZHAO Wenbo. Research Progress of Catalysts for Preparation of Glycerol Carbonate by Urea Alcoholysis. Materials Reports, 2021, 35(Z1): 541-547.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/541
1 Wang A, Li H, Zhang H, et al.Materials, 2019, 12(1), 83.
2 Wu Y, Song X, Zhang J, et al.Journal of the Taiwan Institute of Chemical Engineers, 2018, 87, 131.
3 Demirel Y.International Journal of Chemical Reactor Engineering, 2011, 9(1), 2319.
4 Wang A, Li H, Pan H, et al.Fuel Processing Technology, 2018, 181, 259.
5 Rokicki G, Rakoczy P, Parzuchowski P, et al.Green Chemistry, 2005, 7(7), 529.
6 Hu J, Li J, Gu Y, et al.Applied Catalysis A: General, 2010, 386, 188.
7 George J, Patel Y, Pillai S M, et al.Journal of Molecular Catalysis A: Chemical, 2009, 304(1-2), 1.
8 Vieville C, Yoo J W, Pelet S, et al.Catalysis Letters, 1998, 56, 245.
9 Hu Y, Zhou B, Wang C.Accounts of Chemical Research, 2018, 51(3), 816.
10 Pagliaro M, Ciriminna R, Kimura H, et al.Cheminform, 2007, 46(24), 4434.
11 Sakakura T, Choi J C, Yasuda H.Cheminform, 2007, 38(36), 2365.
12 Park J H, Choi J S, Woo S K, et al.Applied Catalysis A General, 2012, 433-434, 35.
13 Turney T W, Patti A, Gates W, et al.Green Chemistry, 2013, 15, 1925.
14 Oprescu E E, Stepan E, Rosca P, et al.Revista de Chimie, 2012, 63(6), 621.
15 Fujita S I, Yamanishi Y, Arai M. Journal of Catalysis, 2013, 297, 137.
16 Rubio-Marcos F, Calvino-Casilda V, Bañares M A, et al.Journal of Catalysis, 2010, 275(2), 288.
17 Ryu Y B, Kim J S, Kim K H, et al. Research on Chemical Intermediates, 2016, 42(1), 83.
18 Nguyen-Phu H, Park C Y, Shin E W.Applied Catalysis A: General, 2018, 552, 1.
19 Nguyen-Phu H, Shin E W. Applied Catalysis A: General, 2018, 561, 28.
20 Nguyen-Phu H, Shin E W.Journal of Catalysis, 2019, 373, 147.
21 Manjunathan P, Ravishankar R, Shanbhag G V.ChemCatChem, 2016, 8(3), 631.
22 Lü Y Y, Jiang Y, Zhou Q, et al.Journal of Solid State Chemistry, 2017, 256, 93.
23 Kondawar S E, Potdar A S, Rode C V.RSC Advances, 2015, 5, 16452.
24 Kondawar S E, Mane R B, Vasishta A, et al.Applied Petrochemical Research, 2017, 7(1), 41.
25 Marakatti V S, Halgeri A B. RSC Advances, 2015, 5(19), 14286.
26 Jagadeeswaraiah K, Kumar C R, Prasad P S S, et al.Catalysis Science & Technology, 2014, 4(9), 2969.
27 Martín-González M S, Fernández J F, Rubio-Marcos F, et al. Journal of Applied Physics, 2008, 103(8), 083905.
28 Zhang P, Liu L, Fan M, et al. RSC Advances, 2016, 6(80), 76223.
29 Rubio-Marcos F, Calvino-Casilda V, Bañares M A, et al.ChemCatChem, 2013, 5(6), 1431.
30 Liu X, Zhang H, Chang F, et al.Current Organic Chemistry, 2016, 20(7), 761.
31 Singh D, Ganesh A, Mahajani S.Clean Technologies and Environmental Policy, 2015, 17(4), 1103.
32 Fernandes G P, Yadav G D.Catalysis Today, 2018, 309, 153.
33 Hammond C, Lopez-Sanchez J A, Mohd H A R, et al.Dalton Transactions, 2011, 40(15), 3927.
34 Mohd H A R, He Q, Lopez-Sanchez J A, et al.Catalysis Science & Technology, 2012, 2(9), 1914.
35 Sun Y, Tong X, Wu Z, et al.Energy Technology, 2014, 2(3), 263.
36 Wang D, Zhang X, Cong X, et al.Applied Catalysis A: General, 2018, 555, 36.
37 Lopez T, Bosch P, Ramos E, et al. Langmuir, 1996, 12(1), 189.
38 Yamaguchi T, Wang Y, Komatsu M, et al.Catalysis Surveys from Japan, 2002, 5(2), 81.
39 Montouillout V, Massiot D, Douy A, et al. Journal of the American Ceramic Society, 1999, 82(12), 3299.
40 Yadav G D, Ajgaonkar N P, Varma A.Journal of Catalysis, 2012, 292, 99.
41 Hashmi A S K, Hutchings G J.Angewandte Chemie International Edition, 2006, 45(47), 7896.
42 Porta F, Prati L.Journal of Catalysis, 2004, 224(2), 397.
43 Dimitratos N, Lopez-Sanchez J A, Morgan D, et al. Catalysis Today, 2007, 122(3-4), 317.
44 Jagadeeswaraiah K, Kumar C R, Prasad P S S, et al.Applied Catalysis A: General, 2014, 469, 165.
45 Srinivas M, Raveendra G, Parameswaram G, et al.Journal of Chemical Sciences, 2015, 127(5), 897.
46 Jagadeeswaraiah K, Ramesh Kumar C, Rajashekar A, et al.Catalysis Letters, 2016, 146(3), 692.
47 Narkhede N K, Patel A U. RSC Advances, 2015, 5(65), 52801.
48 Narkhede N, Patel A.Applied Catalysis A: General, 2016, 154.
49 Kumar C R, Jagadeeswaraiah K, Prasad P S S, et al.Chemcatchem, 2012, 4(9), 1360.
50 Srikanth A, Viswanadham B, Kumar V P, et al.Applied Petrochemical Research, 2016, 6(2), 145.
51 Babu M S, Srivani A, Parameswaram G, et al.Catalysis Letters, 2015, 145(9), 1784.
52 Kozhevnikova E F, Derouane E G, Kozhevnikov I V.Chemical Communications, 2002 (11), 1178.
53 Corma A, Martınez A, Martınez C.Journal of Catalysis, 1996, 164, 422.
54 Rao K T V, Prasad P S S, et al.Journal of Molecular Catalysis A: Chemical, 2011, 337(1-2), 17.
55 Kumar C R, Prasad P S S, Lingaiah N. Molecular Catalysis, 2011, 350(1-2), 83.
56 Kim D W, Park M S, Selvaraj M, et al. Research on Chemical Interme-diates, 2011, 37(9), 1305.
57 Kim D W, Kim M J, Roshith K, et al.Korean Journal of Chemical Engineering, 2014, 31(6), 972.
58 Kim D W, Park K A, Kim M J, et al. Applied Catalysis A: General, 2014, 473, 31.
59 Lee S D, Park M S, Kim D W, et al. Catalysis Today, 2014, 232, 127.
60 Chen J, Wang C, Dong B, et al.Chinese Journal of Catalysis, 2015, 36(3), 336.
61 Zhang H, Li H, Pan H, et al.Energy Conversion and Management, 2017, 138, 45.
62 Valkenberg M H, DeCastro C, Hölderich W F.Green Chemistry, 2002, 4(2), 88.
63 Wang L, Ma Y, Wang Y, et al.Catalysis Communications, 2011, 12(15), 1458.
64 Zhang J, He D. Reaction Kinetics, Mechanisms and Catalysis, 2014, 113(2), 375.
65 Luo W, Sun L, Yang Y, et al. Catalysis Science & Technology, 2018, 8(24), 6468.
66 Climent M J, Corma A, Frutos P D, et al.Journal of Catalysis, 2010, 269(1), 140.
67 Aresta M, Dibenedetto A, Nocito F, et al. Journal of Catalysis, 2009, 268(1), 106.
68 Indran V P, Zuhaimi N A S, Deraman M A, et al.RSC Advances, 2014, 4(48), 25257.
69 Zuhaimi N A S, Indran V P, Deraman M A, et al.Applied Catalysis A: General, 2015, 502, 312.
70 Suyatmo R I D, Sulistyo H, Sediawan W B.Jurnal Bahan Alam Terbarukan, 2017, 6(2), 143.
71 Wang D, Zhang X, Liu C, et al.Mechanisms and Catalysis, 2015, 115(2), 597.
[1] 王小炼, 杨茂, 刘永辉, 张渝彬, 冯威. 非贵金属催化剂催化硼氢化钠水解制氢的研究进展[J]. 材料导报, 2021, 35(Z1): 21-28.
[2] 刘静, 高正阳, 王杰, 陈霈儒, 杨璐冰. 共掺杂改性TiO2光催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 42-47.
[3] 熊浩林, 韩秀梅, 张晓燕. 分子筛催化剂的发展与展望[J]. 材料导报, 2021, 35(Z1): 137-142.
[4] 刘子林, 林德海, 何发泉, 曹子雄, 王宝冬. 钠化焙烧法回收废SCR催化剂中钒和钨的浸出机理及浸出动力学研究[J]. 材料导报, 2021, 35(Z1): 429-433.
[5] 齐美丽, 李勉拓, 张梦娟, 吴艳玲. 双原子催化剂在电催化领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 481-484.
[6] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[7] 白央, 徐成成, 赵洋, 张荣, 刘清亭, 付旭东, 胡圣飞. 超临界流体制备氮化硼纳米片的研究进展[J]. 材料导报, 2021, 35(7): 7071-7076.
[8] 伍书祺, 黄泽皑, 李晴川, 饶志强, 周莹. Nb2O5/BiOClⅡ型异质结的构建及增强光催化还原二氧化碳[J]. 材料导报, 2021, 35(6): 6001-6007.
[9] 吴彦霞, 梁海龙, 陈鑫, 陈琛, 王献忠, 戴长友, 胡利明, 陈玉峰. 元素(Ce、Co、La、Sn)掺杂对V-Mo/TiO2催化剂脱硝活性的影响[J]. 材料导报, 2021, 35(6): 6020-6027.
[10] 孙延勇, 朱伟芳, 缑敏敏, 郭瑞丽. 埃洛石纳米管结构改性后用于Pebax基质中强化气体分离[J]. 材料导报, 2021, 35(6): 6174-6179.
[11] 赵晨, 武文粉, 孟子衡, 李会泉, 王晨晔, 王兴瑞. 废SCR脱硝催化剂中砷元素赋存形态与氧化碱浸脱除[J]. 材料导报, 2021, 35(5): 5001-5010.
[12] 芦宝华, 徐宁, 陈晓彤, 谢晓红, 李久明. 硼氢化钠还原烯烃和炔烃的研究进展[J]. 材料导报, 2021, 35(5): 5214-5221.
[13] 王杏, 陈洋, 曹桂莲, 邓承继, 丁军, 余超, 祝洪喜. 氮化温度对MgO-C耐火材料结构和性能的影响[J]. 材料导报, 2021, 35(12): 12053-12056.
[14] 赵丹丹, 王舒笑, 顾菁, 单锐, 袁浩然. 基于固废炭基催化剂的稻壳热解气体提质研究[J]. 材料导报, 2021, 35(11): 11001-11006.
[15] 胡洁琼, 谢明, 陈永泰, 杨有才, 方继恒, 范小通, 李爱坤. Au-Pt-Ni三元催化剂体系纳米相图的研究进展[J]. 材料导报, 2020, 34(Z2): 338-343.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed