Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 42-47    
  无机非金属及其复合材料 |
共掺杂改性TiO2光催化剂的研究进展
刘静1, 高正阳1, 王杰2, 陈霈儒1, 杨璐冰1
1 山东建筑大学市政与环境工程学院,济南 250100
2 山东省环科院环境工程有限公司,济南 250014
Research Progress of Co-doped TiO2 Photocatalyst
LIU Jing1, GAO Zhengyang1, WANG Jie2, CHEN Peiru1, Yang Lubing1
1 School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250100, China
2 Shandong Engineering of Consulting Institute, Jinan 250014, China
下载:  全 文 ( PDF ) ( 2947KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 TiO2具备化学稳定性好、催化活性高、无污染、价格低廉等优点,在光催化领域有广阔的发展前景,但禁带宽度较大、可见光吸收能力差等缺点影响了TiO2在生产生活中的推广利用。本文综述了共掺杂改性TiO2在光催化领域的研究进展,介绍了纳米TiO2的光催化机理,分析比较了金属与金属共掺杂、非金属与非金属共掺杂、金属与非金属共掺杂三种改性方式对TiO2光催化性能的影响;指出共掺杂改性可以通过降低禁带宽度、产生可见光效应、抑制光生电子空穴复合等方式提高TiO2的光催化活性;总结了有关共掺杂作用机理和离子间协同作用的研究成果,提出了当下共掺杂改性TiO2研究存在的不足之处,并对今后的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘静
高正阳
王杰
陈霈儒
杨璐冰
关键词:  二氧化钛  共掺杂  催化剂  纳米材料  环境    
Abstract: TiO2 has the advantages of good chemical stability, high catalytic activity, no pollution, and low price, and has broad development prospects in the field of photocatalysis. The bandgap of TiO2 affects its absorption of visible light, which is not conducive to the promotion and utilization of TiO2 in production and life. The research progress of co-doping modified TiO2 in the field of photocatalysis was reviewed and the photocatalysis mechanism of nano-TiO2 was introduced. The influences of different modification methods such as metal/metal co-doping, non-metal/non-metal co-doping and metal/non-metal co-doping on the photocatalytic properties of TiO2 were analyzed and compared. The co-doping modification can improve the photocatalytic activity of TiO2 by reducing the band gap, producing visible light effect and inhibiting the recombination of electron and hole. Finally, the research results of the mechanism of co-doping and the coordination between ions were summarized, the shortco-mings of the current research on co-doped TiO2 were pointed out, and the future research direction was put forward.
Key words:  TiO2    co-doping    catalyst    nanomaterials    environment
                    发布日期:  2021-07-16
ZTFLH:  TQ034  
通讯作者:  liujing99@sdu.edu.cn   
作者简介:  刘静,山东建筑大学教授,硕士研究生导师。2004年9月至2007年12月,在山东大学环境科学与工程学院学习,获工学博士学位。科研主要集中在环境介质中环境激素类有机污染物的分析方法、来源解析、迁移转化规律及去除技术研究、环境管理与规划研究两大领域。发表学术论文30篇, SCI检索5篇,EI检索6篇;主持和参与国家级省部厅局级环境工程类科研项目10余项;主持和参与山东省环境规划与管理类项目和课题10余项。获山东省科技进步三等奖一项、获“山东省环境保护科学技术二等奖”一项、获“山东省环境保护优秀论文一等奖”一项、获“山东省教育厅科技进步三等奖”一项。授权专利两项。学术兼职:担任山东环境科学学会理事、济南市化工协会理事、山东省环保产业协会理事等职务。
引用本文:    
刘静, 高正阳, 王杰, 陈霈儒, 杨璐冰. 共掺杂改性TiO2光催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 42-47.
LIU Jing, GAO Zhengyang, WANG Jie, CHEN Peiru, Yang Lubing. Research Progress of Co-doped TiO2 Photocatalyst. Materials Reports, 2021, 35(Z1): 42-47.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/42
1 Fujishima A, Honda K.Nature, 1972, 238(5358),37.
2 Binas V, Venieri D, Kotzias D, et al. Journal of Materiomics, 2017, 3(1), 3.
3 Lyu J, Zhou L, Shao J, et al.Chemical Engineering Journal, 2020, 400,125927.
4 Yang X, Koziel J A, Laor Y, et al.Catalysts, 2020, 10(6),607.
5 Zhang G, Peyravi A, Hashisho Z, et al.Catalysis Science & Technology, 2020, 10(8), 2378.
6 Lee Y E, Chung W C, Chang M B. Environmental Science and Pollution Research, 2019, 26(20), 20908.
7 Ajmal A, Majeed I, Malik R N, et al.RSC Advances, 2014, 4(70), 37003.
8 D'Amato C A, Giovannetti R, Zannotti M, et al.Applied Surface Science, 2018, 441, 575.
9 Zhu P, Ren Z, Wang R, et al.Frontiers of Materials Science, 2020, 14(1), 33.
10 Oh W C, Nguyen D C T, Ullah K, et al.Separation Science, 2020, 55(8),1544.
11 El-Deen S E A S, Zhang F S.Journal of Experimental Nanoscience, 2015, 11(4),1.
12 Popa N, Visa M.Materials Chemistry and Physics, 2021, 258,123927.
13 Zendehzaban M, Ashjari M, Sharifnia S. International Journal of Energy Research, DOI:10.1002/er.5072.
14 Haq I U, Ahmad W, Ahmad I, et al.Water Environment Research, 2020, 92(12),2086.
15 Martin S T, Lee A T, Hoffmann M R. Environmental Science & Technology, 1995, 29(10),2567.
16 Tian F, Zhu R, Ouyang F.Journal of Environmental Sciences, 2013, 25(11), 2299.
17 Cai J, Wu X, Li Y, et al. Journal of Colloid and Interface Science, 2018,514, 791.
18 Li S, Cai J, Wu X, et al. Applied Surface Science, 2018, 443, 603.
19 Kuvarega A T, Krause R W M, Mamba B B.The Journal of Physical Chemistry C, 2011, 115(45), 22110.
20 Reszczyńska J, Grzyb T, Sobczak J W, et al.Applied Catalysis B, Environmental, 2015, 163, 40.
21 Vaiano V, Sacco O, Sannino D, et al.Applied Catalysis B, Environmental, 2015, 170, 153.
22 Chu S Z, Inoue S, Wada K, et al.The Journal of Physical Chemistry B, 2003, 107(27), 6586.
23 Subramanian V, Wolf E, Kamat P V.The Journal of Physical Chemistry B, 2001, 105(46), 11439.
24 Liu Z, Ma Z. Materials Research Bulletin, 2019, 118,110492.
25 Vinodgopal K, Wynkoop D E, Kamat P V. Environmental Science & Technology, 1996, 30(5), 1660.
26 Yang C, Dong W, Cui G, et al.Electrochimica Acta, 2017, 247, 486.
27 Dil M A, Haghighatzadeh A, Mazinani B.Bulletin of Materials Science, DOI: 10.1007/s12034-019-1927-9.
28 戴超. 锐钛矿型TiO2本征缺陷、掺杂的第一性原理研究. 硕士学位论文, 武汉理工大学, 2012.
29 Linsebigler A L, Lu G, Yates J R J T.Chemical Reviews, 1995, 95(3), 735.
30 Nosaka Y, Fox M A. Journal of Physical Chemistry, 1988, 92(7),1893.
31 Fotou G P, Pratsinis S E. Chemical Engineering Communications, 1996, 151(1), 251.
32 Choi W, Termin A, Hoffmann M R.The Journal of Physical Chemistry, 1994, 98(51), 13669.
33 Asahi R, Morikawa T, Ohwaki T, et al.Science, 2001, 293(5528), 269.
34 Kaleji B K, Mirzaee S, Ghahramani S, et al. Journal of Materials Science, Materials in Electronics, 2018, 29(14), 12351.
35 王杰,汪莉,贺拴玲,等. 应用化工, 2019,48(12),2821.
36 Xu A W, Gao Y, Liu H Q. Journal of Catalysis, 2002, 207(2), 151.
37 He J J, Du H L, Liu J, et al. Materials Science Forum, 2015, 809,878.
38 Darshana B, Parikh S, Shah M. Energy, Ecology and Environment, 2020,5(5),344.
39 Benjwal P, Kar K K.RSC Advances, 2015, 5(119),98166.
40 Valentin C D, Finazzi E, Pacchioni G, et al.Chemical Physics, 2007, 339(1-3),44.
41 Dong F, Guo S, Wang H, et al. The Journal of Physical Chemistry C, 2011, 115(27), 13285.
42 Ho W, Jimmy C Y, Lee S. Chemical Communications, 2006,111 (10), 1115.
43 Ohno T, Mitsui T.Chemistry Letters, 2003, 32(4), 364.
44 Deng L, Chen Y, Yao M, et al.Journal of Sol-Gel Science and Technology, 2010, 53(3), 535.
45 Dong X, Sun Z, Zhang X, et al.Australian Journal of Chemistry, 2018, 71(5), 315.
46 Zhang J, Xing Z, Cui J, et al.Dalton Transactions, 2018, 47(14), 4877.
47 赵林,谢艳招,陈日华,等. 人工晶体学报, 2018,47(12),2663.
48 Khoiriah K, Wellia D V, Gunlazuardi J, et al.Indonesian Journal of Chemistry, 2020, 20(3),587.
49 Dhamaniya B P, Kumar A, Srivastava A K, et al.Research on Chemical Intermediates, 2017, 43(1), 387.
50 邢锦娟,彭亮亮,冉林涛,等.材料科学与工程学报,2017,35(2),274.
51 Ouyang W, Ji Y.Micro & Nano Letters, 2020, 15(8), 566.
52 杨荣,靳映霞,高洪林,等. 功能材料, 2016,47(10),10142.
53 张鹏会,李艳春,张小琳,等. 水处理技术, 2019,45(5),52.
54 Liu W, Lang Z. RSC Advances, 2020, 10(7),3844.
55 于佳辉. Fe、N共掺杂负载型TiO2光催化氧化硝基苯废水的试验研究. 硕士学位论文, 沈阳建筑大学,2019.
56 Isari A A, Hayati F, Kakavandi B, et al.Chemical Engineering Journal, 2019,392,123685.
57 Li Z, Ma C Y. Key Engineering Materials, 2020, 853, 235.
58 Mohd Yatim A A, Ismail N A, Hamid M R Y, et al.Journal of Nanoscience and Nanotechnology, 2020, 20(2), 741.
59 崔天伊,李帅宏,梁鹏举,等. 精细化工, 2020,37(6),1145.
60 沈晓玲. Fe/I共掺杂TiO2的制备及其光催化降解气相苯的研究. 硕士学位论文, 中国矿业大学,2019.
61 Bayan E M, Lupeiko T G, Pustovaya L E, et al.Journal of Alloys & Compounds, 2020,822,153662.
62 Wang R, An S, Zhang J, et al.Journal of Rare Earths, 2020, 38(1), 39.
63 Borzyszkowska A F, Pieczyńska A, Ofiarska A, et al. International Journal of Environmental Science and Technology, 2020,17(4),2163.
[1] 王小炼, 杨茂, 刘永辉, 张渝彬, 冯威. 非贵金属催化剂催化硼氢化钠水解制氢的研究进展[J]. 材料导报, 2021, 35(Z1): 21-28.
[2] 熊浩林, 韩秀梅, 张晓燕. 分子筛催化剂的发展与展望[J]. 材料导报, 2021, 35(Z1): 137-142.
[3] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[4] 刘子林, 林德海, 何发泉, 曹子雄, 王宝冬. 钠化焙烧法回收废SCR催化剂中钒和钨的浸出机理及浸出动力学研究[J]. 材料导报, 2021, 35(Z1): 429-433.
[5] 齐美丽, 李勉拓, 张梦娟, 吴艳玲. 双原子催化剂在电催化领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 481-484.
[6] 王凯, 冯东, 赵文波. 尿素醇解法制备甘油碳酸酯催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 541-547.
[7] 解琳, 何文涛, 高京. 聚膦腈微纳米材料的制备及应用[J]. 材料导报, 2021, 35(Z1): 578-585.
[8] 李刊, 魏智强, 乔宏霞, 路承功, 郭健, 乔国斌. 四大类外掺材料对聚合物改性水泥基材料性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 654-661.
[9] 刘明浩, 宋武林, 卢照, 李明辉. 纳米二氧化钛固相载体研究进展[J]. 材料导报, 2021, 35(9): 9108-9114.
[10] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[11] 鲍玖文, 庄智杰, 张鹏, 魏佳楠, 高嵩, 赵铁军. 基于相似性的海洋潮汐区环境混凝土抗氯盐侵蚀性能研究进展[J]. 材料导报, 2021, 35(7): 7087-7095.
[12] 谭聪, 刘洋, 何莹, 李洋, 李博文, 仇浩. 不同粒径金属基纳米颗粒的性质与其环境行为和生物效应的关系[J]. 材料导报, 2021, 35(7): 7121-7126.
[13] 吴彦霞, 梁海龙, 陈鑫, 陈琛, 王献忠, 戴长友, 胡利明, 陈玉峰. 元素(Ce、Co、La、Sn)掺杂对V-Mo/TiO2催化剂脱硝活性的影响[J]. 材料导报, 2021, 35(6): 6020-6027.
[14] 赵晨, 武文粉, 孟子衡, 李会泉, 王晨晔, 王兴瑞. 废SCR脱硝催化剂中砷元素赋存形态与氧化碱浸脱除[J]. 材料导报, 2021, 35(5): 5001-5010.
[15] 芦宝华, 徐宁, 陈晓彤, 谢晓红, 李久明. 硼氢化钠还原烯烃和炔烃的研究进展[J]. 材料导报, 2021, 35(5): 5214-5221.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed