Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 322-327    
  金属与金属基复合材料 |
金纳米颗粒应用于肿瘤显像和治疗的研究进展
赵晨1,2, 毕常芬2, 郑宝鑫1,2, 侯文彬2, 李祎亮2
1 天津中医药大学中药学院,天津 301617
2 北京协和医学院 & 中国医学科学院放射医学研究所,天津市放射医学与分子核医学重点实验室,天津 300192
Research Progress on Application of Gold Nanoparticles in Tumor Imaging and Therapy
ZHAO Chen1,2, BI Changfen2, ZHENG Baoxin1,2, HOU Wenbin2, LI Yiliang2
1 College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
2 Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China
下载:  全 文 ( PDF ) ( 3528KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金纳米颗粒(Gold nanoparticles, GNPs)具有许多优异的理化性质,这使其在肿瘤显像和治疗方面受到了越来越多的关注。例如:GNPs具有强的X射线衰减能力,可应用于电子计算机断层扫描(Computed tomography, CT)成像;GNPs可产生等离子体激元荧光(Plasmon enhanced fluorescence, PEF),增强荧光成像的效果;GNPs在激发光下会产生强电磁场,可用于表面增强拉曼散射;GNPs在近红外区域有较高的局域表面等离子共振(Localized surface plasmon resonance, LSPR)效应,可以应用于光声显像(Photoacoustic Imaging, PA)。GNPs具有放射增敏活性,在X射线辐射下,其表面可以产生二次辐射,从而提高放射治疗的效果;GNPs在近红外光区域表现出明显的光热效应,可将光能转化为热能,从而有效地消除肿瘤组织。此外,GNPs的表面很容易进行修饰,以用于递送药物、核酸、靶向肿瘤以及提高生物相容性。本文主要对GNPs在肿瘤显像以及治疗的研究进展进行综述。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵晨
毕常芬
郑宝鑫
侯文彬
李祎亮
关键词:  金纳米颗粒  肿瘤  显像  治疗    
Abstract: Gold nanoparticles (GNPs) has received great attention in the field of tumor imaging and therapy because of its excellent physical and chemical properties. GNPs provides high X-ray attenuation for Computed tomography (CT) imaging. After receiving the excitation light, plasmon enhanced fluorescence (PEF) can be produced by GNPs to enhance the effect of fluorescence imaging. GNPs can produce strong electromagnetic fields under excitation light, which can be used for surface enhanced Raman scattering. There is a high localized surface plasmon re-sonance (LSPR) effect of GNPs in the near infrared region, which can be applied for photoacoustic imaging (PA). GNPs are known to possess radiosensitizing activity,which can improve the effect of radiotherapy by producing the secondary radiation upon X-ray irradiation. Due to the broad absorption in the near-infrared range, GNPs shows a significant photothermal effect,it can convert light energy into heat energy, thus ablate tumor tissues effectively. In addition, the surface of GNPs can be easily modified to deliver drugs and nucleic acids, target tumors and improve biocompatibility. This article mainly reviews the research progress of GNPs in tumor imaging and therapy.
Key words:  gold nanoparticles    tumor    imaging    therapy
                    发布日期:  2021-07-16
ZTFLH:  R730.49  
  R730.59  
基金资助: 中国医学科学院医学与健康科技创新工程项目(2016-I2M-3-022);中央高校基本科研业务费专项资金(3332018117;3332020057);天津市科技计划(18ZXXYSY00110); 天津市自然科学基金(18JCQNJC09500)
通讯作者:  liyiliang@irm-cams.ac.cn;houwenbin@irm-cams.ac.cn   
作者简介:  赵晨,现为天津中医药大学中药学院硕士研究生。目前主要研究领域为纳米材料的制备与应用。李祎亮,博士,研究员,博士研究生导师。从事化学生物学和分子影像学基础研究工作;以及炎症、DNA损伤修复等分子靶标原创性创新药的发现等研究。侯文彬,博士,研究员。主要从事中药、天然药物创新药的发现、研究与开发。
引用本文:    
赵晨, 毕常芬, 郑宝鑫, 侯文彬, 李祎亮. 金纳米颗粒应用于肿瘤显像和治疗的研究进展[J]. 材料导报, 2021, 35(Z1): 322-327.
ZHAO Chen, BI Changfen, ZHENG Baoxin, HOU Wenbin, LI Yiliang. Research Progress on Application of Gold Nanoparticles in Tumor Imaging and Therapy. Materials Reports, 2021, 35(Z1): 322-327.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/322
1 Su M Z, Lao J H, Zhang N, et al. Cancer, 2020, 126(14), 3312.
2 Guo C X, Jin Y S, Dai Z F. Bioconjugate Chemistry, 2014, 25(5), 840.
3 Fernanda S, Barbara S, Alessandra S, et al. Bioconjugate Chemistry, 2017, 28(1), 161.
4 Sun X L, Huang X L, Yan X F, et al. ACS Nano, 2014, 8(8), 8438.
5 Han L M, Duan W J, Li X W, et al. ACS Applied Materials & Interfaces, 2019, 11(17), 15241.
6 Zhang J, Liang L J, Li Z Y, et al. Materials Science and Engineering: C, 2020, 116, 111127.
7 Yoshida A, Kitayama Y, Kiguchi K, et al. ACS Applied Bio Materials, 2019, 2(3), 1177.
8 Luo M H, Lewik G, Ratcliffe J C, et al. ACS Applied Materials & Interfaces, 2019, 11(37), 33637.
9 Zhao B X, Dong K L, Lin M M, et al. Advanced Healthcare Materials, 2018,7(16), 1800377.
10 Behzadpour N, Ranjbar A, Azarpira N, et al. Ultrasound in Medicine & Biology, 2020,46(9), 2322.
11 Li Y, Liu Z M, Hou Y Q, et al. ACS Applied Materials & Interfaces, 2017, 9(30), 25098.
12 Zheng B, Wang H J, Pan H Z, et al. ACS Nano, 2017, 11(12), 11898.
13 Wang X Y, Song L Q, Pan W, et al. ACS Nano, 2020, 14(9), 11017.
14 Wei J P, Li J C, Sun D, et al. Advanced Functional Materials, 2018, 28(17), 1706310.
15 Zeng C T, Shang W T, Liang X Y, et al. ACS Applied Materials & Interfaces, 2016, 8(43), 29232.
16 Feng W, Zhou X J, Nie W, et al. ACS Applied Materials & Interfaces, 2015, 7(7), 4354.
17 Ma N N, Wu F G, Zhang X D, et al. ACS Applied Materials & Interfaces, 2017, 9(15), 13037.
18 Gao N Y, Chen Y, Li L, et al. The Journal of Physical Chemistry C, 2014, 118(25), 13904.
19 Liu Y J, Yang Z, Huang X L, et al. ACS Nano, 2018, 12(8), 8129.
20 Li J X, Zhu Z, Zhu B Q, et al. Analytical Chemistry, 2016, 88(15), 7828.
21 Feng J, Chen L M, Xia Y Z, et al. ACS Biomatericals Science & Engineering, 2017, 3(4), 608.
22 Hou G H, Qian J M, Xu W J, et al. Carbohydrate Polymers, 2019, 212(15), 334.
23 Xu W J, Qian J M, Hou G H, et al. ACS Applied Materials & Interfaces, 2017, 9(42), 36533.
24 Zhu J Z, Sun W J, Zhang J L, et al. Bioconjugate Chemistry, 2017, 28(11), 2692.
25 Zhu J Y, Wang G Y, Alves C S, et al. Langmuir, 2018, 34(41), 12428.
26 Niu C X, Song Q W, He G, et al. Analytical Chemistry, 2016, 88(22), 11062.
27 Zhang H, Wang Y M, Zhong H, et al. ACS Applied Bio Materials, 2019, 2(11), 5012.
28 Zhang L Y, Wang D H, Huang H W, et al. ACS Applied Materials & Interfaces, 2016, 8(10), 6646.
29 Fales A M, Crawford B M, Vo-Dinh T. ACS Omega, 2016, 1(4), 730.
30 Albuquerque C D L, Schultz Z D. Analytical Chemistry. 2020, 92(13), 9389.
31 Shen K W, Huang Y T, Li Q J, et al. ACS Omega, 2019, 4(19), 18118.
32 Chen Y S, Frey W, Kim S S, et al. Nano Letters, 2011, 11(2), 348.
33 Deng X R, Liang S, Cai X C, et al. Nano Letters, 2019, 19(10), 6772.
34 Meng Z Q, Zhou X F, She J L, et al. Nano Letters, 2019, 19(11), 8109.
35 Li X, Xiong Z G, Xu X Y, et al. ACS Applied Materials & Interfaces, 2016, 8(31), 19883.
36 Liu M Z, Zhang P, Deng L M, et al. Biomaterials Science, 2019, 7, 1132.
37 You Q, Sun Qi, Yu M, et al. ACS Applied Materials & Interfaces, 2017,9(46), 40017.
38 Jokerst J V, Cole A J, Sompel D V, et al. ACS nano, 2012, 6(11), 10366.
39 Li W Q, Wang Z G, Hao S J, et al. ACS Applied Materials & Interfaces, 2017, 9(20), 16793.
40 Sarkar S, Konar S, Prasad P N, et al. Langmuir, 2017, 33(31), 7649.
41 Zeiderman M R, Morgan D E, Christein JD, et al. ACS Biomatericals Science & Engineering, 2016, 2(7), 1108.
42 Taschauer A, Polzer W, Poöschl S, et al. ACS Applied Materials & Interfaces, 2020, 12(27), 30095.
43 Guo S T, Huang Y Y, Jiang Q, et al. ACS nano, 2010, 4(9), 5505.
44 Li M F, Zhao Q, Yi X, et al. ACS Applied Materials & Interfaces, 2016, 8(15), 9557.
45 Klein S, Harreiβ C, Menter C, et al. ACS Applied Materials & Interfaces, 2018, 10(20), 17071.
46 Ju Y M, Zhang H L, Yu J, et al. ACS Nano, 2017, 11(9), 9239.
47 Liu X H, Gao C H, Gu J H, et al. ACS Applied Materials & Interfaces, 2016, 8(41), 27622.
48 Ayala-Orozco C, Urban C, Knight MW, et al. ACS nano, 2014, 8(6), 6372.
49 Chen A M, Taratula O, Wei D G, et al. ACS nano, 2010, 4(7), 3679.
50 Chen K, Kothapalli S R, Liu H G, et al. Journal of the American Chemical Society, 2014, 136(9), 3560.
[1] 邬欣, 曾利胜, 王剑龙, 李建. 无机纳米颗粒在癌症治疗中的研究进展[J]. 材料导报, 2021, 35(Z1): 87-93.
[2] 姜佳敏, 李盼盼, 方斌, 杜威, 柏桦, 彭勃, 李林. 蛋白质药物胞内递送纳米载体的研究进展[J]. 材料导报, 2021, 35(13): 13186-13197.
[3] 申欣, 孟昭旭, 廉鹤. 纳米羟基磷灰石复合材料在癌症治疗中的应用进展[J]. 材料导报, 2020, 34(Z2): 88-90.
[4] 张雪雁, 孟昭旭, 廉鹤. 普鲁士蓝基纳米粒子在癌症治疗及成像中的应用进展[J]. 材料导报, 2020, 34(Z2): 95-98.
[5] 朱俊名, 董梁, 秦溱, 李振楠, 袁青梅. 碳基及氧化锌量子点在癌症诊疗应用中的研究进展[J]. 材料导报, 2020, 34(9): 9075-9085.
[6] 朱静怡, 盛慧, 张林珊, 管婧希. 基于超支化聚乙烯亚胺的双/多模态成像造影剂的研究进展[J]. 材料导报, 2020, 34(19): 19197-19205.
[7] 宋鹏宇, 邓永岩, 韩海杰, 金桥. 活性氧可激活的聚合物纳米载体用于光动力-化疗联合治疗的研究[J]. 材料导报, 2020, 34(10): 10166-10170.
[8] 王怀基, 董海青. 还原响应的白蛋白纳米颗粒负载甲氨蝶呤用于抗肿瘤治疗[J]. 材料导报, 2019, 33(Z2): 547-552.
[9] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[10] 冯爱玲, 徐榕, 王彦妮, 张亚妮, 林社宝. 核壳型稀土上转换纳米材料及其生物医学应用[J]. 材料导报, 2019, 33(13): 2252-2259.
[11] 谭永涛, 孔令斌, 康龙, 冉奋. Nano-Au@PANI蛋黄空心结构电极材料的构筑及超级电容性能[J]. 《材料导报》期刊社, 2018, 32(1): 47-50.
[12] 张栋, 肖淼, 马迅, 程国胜, 张兆春. 一种在硅材料表面组装金纳米颗粒的新方法*[J]. 《材料导报》期刊社, 2017, 31(2): 25-28.
[13] 赵嘉兰, 王悦敏, 牛亚伟, 董晓婷, 秦凌浩. 内源性外泌体作为药物递释系统的研究进展*[J]. CLDB, 2017, 31(13): 160-165.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed