Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 315-321    
  金属与金属基复合材料 |
氧化石墨烯/金属-有机框架复合材料在光催化中的应用
朱家乐1,2, 白羽婷1, 冯思思1
1 山西大学分子科学研究所,太原 030006
2 山西大学化学化工学院,太原 030006
Applications of Graphene Oxide/Metal-Organic Framework Composites in Photocatalysis
ZHU Jiale1,2, BAI Yuting1, FENG Sisi1
1 Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
2 School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006,China
下载:  全 文 ( PDF ) ( 4069KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光催化因其绿色安全、环境友好、成本低廉等优势,被认为是解决当前世界范围内环境问题和能源危机的有效方法。光催化技术的核心之一是光催化材料的研发,制备光催化活性高、组成稳定、可回收再利用的光催化剂是许多研究者的共同追求。
近年来,金属-有机框架(MOFs)作为一类新型光催化材料已被广泛关注,但是由于结构不稳定、容易聚集、光生电子空穴对极易复合等缺点,其光催化效果受到严重影响,限制了MOFs在实际生产生活中的应用。因此,找到一种简便实用的方法来改善MOFs的光催化性能具有十分重要的意义。
经实验证实,将氧化石墨烯(GO)与MOFs复合是有效方法之一。GO表面丰富的含氧基团使其易与MOFs复合,GO稳定的二维平面结构能增强MOFs的结构稳定性,同时GO极强的亲水能力还使MOFs容易分散在溶剂中。此外,更值得一提的是GO/MOF复合材料的电子-空穴复合速率得到有效降低,相比于母体组分其光催化活性显著提升。该方法易于操作、成本低廉,且对多种MOFs都有较好的适用性。
本文综述了GO/MOF复合材料的最新进展,重点介绍了此类复合材料作为光催化剂在去除环境污染物中的应用,包括去除气态污染物、还原重金属离子、降解抗生素类药物、降解有机染料和降解其他有机污染物等方面。最后对GO/MOF复合材料未来的发展趋势作出预测,以期推动MOFs新型复合材料应用于环境修复。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱家乐
白羽婷
冯思思
关键词:  氧化石墨烯  金属-有机框架  复合材料  光催化  环境修复    
Abstract: Photocatalysis is considered as an effective method to solve currently environmental problems and energy crises around the world due to its advantages of safe, environment-friendly, and inexpensive. Research and development of photocatalytic materials are critical for photocatalysis, and it is the common pursuit of many researchers to prepare photocatalytic catalysts with high photocatalytic activity, stable composition, and excellent recyclability.
In recent years, metal-organic frameworks (MOFs), as a new kind of photocatalytic materials, have been widely concerned. However, due to their disadvantages such as the unstable structure, the tendency to cluster, and the easy combination of photogenerated electron-hole pairs, their photocatalytic performances have been seriously affected, which limits the applications of MOFs in actual production and life. Therefore, it is of great significance to find a simple and practical method to improve the photocatalytic performance of MOFs.
It has been verified that the combination of graphene oxide (GO) and MOFs is one of the effective methods. The abundant oxygenic functional groups on the surface of GO can facilitate the hybridization of GO with MOFs. The stable two-dimensional planar structure of GO can enhance the structural stability of MOFs. Meanwhile, the extremely strong hydrophilic ability of GO can also make MOFs easy to disperse in the solvent. In addition, it is worth mentioning that the recombination rate of the photogenerated electron-hole pairs of GO/MOF composites is efficiently reduced, and their photocatalytic performance can be significantly improved compared with that of the parent component. Moreover, the technique is easy to operate and low in cost, and it has good applicability to a variety of MOFs.
In this paper, the recent progress of GO/MOF composites is reviewed, and the application of the composites as photocatalysts in the removal of environmental pollutants is highlighted, including removal of gaseous pollutants, reduction of heavy metal ions, degradation of antibiotic drugs, degradation of organic dyes and other organic pollutants. Finally, future perspectives on the development and application of GO/MOF composites for pollution remediation are presented.
Key words:  graphene oxide    metal-organic frameworks    composites    photocatalysis    environmental remediation
                    发布日期:  2021-07-16
ZTFLH:  TB34  
基金资助: 山西省自然科学基金(201701D121039)
通讯作者:  ssfeng@sxu.edu.cn   
作者简介:  朱家乐,化学专业,2020年7月毕业于山西大学,获得理学学士学位。冯思思,教授,硕士研究生导师。2008年7月毕业于山西大学,获理学博士学位,同年加入山西大学分子科学研究所工作至今,主要从事多功能金属-有机杂化材料的制备及性质研究,作为访问学者先后赴南开大学(2012—2013)和美国南佛罗里达大学(2018—2019)访学。主持并完成国家自然科学青年基金、高等学校博士学科点专项科研基金、以及山西省自然科学基金等项目,已发表SCI论文50余篇,授权国家发明专利13项。
引用本文:    
朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
ZHU Jiale, BAI Yuting, FENG Sisi. Applications of Graphene Oxide/Metal-Organic Framework Composites in Photocatalysis. Materials Reports, 2021, 35(Z1): 315-321.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/315
1 云梦迪. 环境群体性事件舆情分析及应对策略研究. 硕士学位论文, 内蒙古大学, 2017.
2 Pan Y, Yuan X, Jiang L, et al. Chemical Engineering Journal, 2018, 354, 407.
3 Zhong S, Xi Y, Chen Q, et al. Nanoscale, 2020, 12(10), 5764.
4 Wang Y, Ling L, Zhang W, et al. ChemSusChem, 2018, 11(4), 666.
5 Jabbari V, Veleta J M, Zarei-Chaleshtori M, et al. Chemical Engineering Journal, 2016, 304, 774.
6 Zhao Y, Cai W, Chen J, et al. Frontiers in Chemistry, 2019, 7, 789.
7 Liang Y N, Oh W D, Li Y, et al. Applied Catalysis A: General, 2018, 562, 94.
8 卞刚. 氧化石墨烯复合材料的构建及其催化性能研究. 博士学位论文, 江南大学, 2018.
9 Wang L, Sofer Z, Pumera M. ACS Nano, 2020, 14, 21.
10 Li T, Tian T, Chen F, et al. Australian Journal of Chemistry, 2019, 72(5), 334.
11 Pi Y, Li X, Xia Q, et al. Chemical Engineering Journal, 2018, 337, 351.
12 梁祥, 陈莲芬, 张利, 等. 科学通报, 2018, 63(3), 248.
13 张晓琼, 汪彤, 王培怡, 等. 色谱, 2016, 34(12), 1176.
14 王丽苹. 材料导报, 2017, 31(13), 51.
15 Zhu L, Liu X Q, Jiang H L, et al. Chemical Reviews, 2017, 117, 8129.
16 Li S X, Luo P, Wu H Z, et al. ChemCatChem, 2019, 11, 2978.
17 余林玲. 金属有机骨架/氧化石墨烯小球的制备及其对四环素类抗生素吸附性能研究. 硕士学位论文, 华南理工大学, 2019.
18 褚梅, 李曦, 李娜, 等. 材料导报, 2018, 32(9), 1417.
19 Wang Q, Gao Q Y, Al-Enizi A M, et al. Inorganic Chemistry Frontiers, 2020, 7, 300.
20 Zhu L N, Meng L J, Shi J Q, et al. Journal of Environmental Management, 2019, 232, 964.
21 Sarker M, Song J Y, Jhung S H. Chemical Engineering Journal, 2018, 335, 74.
22 Yang Z W, Xu X Q, Liang X X, et al. Applied Surface Science, 2017, 420, 276.
23 Rao Z, Feng K, Tang B B, et al. ACS Applied Materials & Interfaces, 2017, 9, 2594.
24 Wu Y, Luo H J, Wang H, et al. RSC Advances, 2014, 4, 40435.
25 Mao J J, Ge M Z, Huang J Y. Journal of Materials Chemistry A, 2017, 5, 11873.
26 Lin K Y A, Lee W D. Chemical Engineering Journal, 2016, 284, 1017.
27 何骁生. 空气污染物及其组分与心肺疾病死亡、冠心病发生的流行病学研究. 博士学位论文, 华中科技大学, 2014.
28 Hoek G, Krishnan R M, Beelen R, et al. Environmental Health, 2013, 12(1), 43.
29 Xiao S, Zhang D, Li G, et al. In: Nanostructured photocatalysts, Yamashita H, Li H X, ed., Springer, Switzerland, 2016, pp. 99.
30 Li X, Le Z, Chen X, et al. Applied Catalysis B: Environmental, 2018, 236, 501.
31 Xiao S, Pan D, Liang R, et al. Applied Catalysis B: Environmental, 2018, 236, 304.
32 刁维萍, 倪吾钟, 倪天华, 等. 广东微量元素科学, 2004(3), 1.
33 Wang C C, Du X D , Li J, et al. Applied Catalysis B: Environmental, 2016, 193, 198.
34 张世霞. 中国科技信息, 2009(13), 32.
35 考庆君, 吴坤, 邓晶, 等. 癌变·畸变·突变, 2007(6), 474.
36 Liang R, Shen L, Jing F, et al. ACS Applied Materials & Interfaces, 2015, 7(18), 9507.
37 Wu Z, Yuan X, Zhong H, et al. Journal of Molecular Liquids, 2017, 247, 215.
38 冯晶晶, 王小万, 靖瑞锋. 中国抗生素杂志, 2014, 39(1), 14.
39 Wu Q, Liu Y N, Jing H C, et al. Chemical Engineering Journal, 2020, 390, 124615.
40 赵敏. 解放军医学杂志, 2011, 36(2), 104.
41 Yang C, You X, Cheng J, et al. Applied Catalysis B: Environmental, 2017, 200, 673.
42 孙广龙, 胡立宏. 药学研究, 2017, 36(1), 1.
43 Fakhri H, Bagheri H. Materials Science in Semiconductor Processing, 2020, 107, 104815.
44 Wu Y, Luo H, Wang H. RSC Advances, 2014, 4(76), 40435.
45 Yang Y, Wang W, Li H, et al. Materials Letters, 2017, 197, 17.
46 Yuan X, Wang H, Wu Y, et al. Applied Organometallic Chemistry, 2016, 30(5), 289.
47 Tang B, Ren S, Zhang Z, et al. Zeitschrift für anorganische und allgemeine Chemie, 2020, 646(7), 359.
48 Bai Y T, Zhang S, Feng S S, et al. Dalton Transactions, 2020, 49(31), 10745.
49 Tang J, Wang J. RSC Advances, 2017, 7, 50829.
50 Wu Y, Luo H, Zhang L. Environmental Science Pollution Research, 2015, 22, 17238.
51 王砚时. 我国农药过量使用问题的多中心治理研究. 硕士学位论文, 北京林业大学, 2014.
52 Mohaghegh N, Tasviri M, Rahimi E, et al. Applied Surface Science, 2015, 351, 216.
53 Van der Veen I, de Boer J. Chemosphere, 2012, 88(10), 1119.
54 Lin J, Hu H, Gao N, et al. Journal of Water Process Engineering, 2020, 33, 101010.
55 Xie A T, Cui J Y, Yang J, et al. Applied Catalysis B: Environmental, 2020, 264, 118548.
56 Yang Q, Wang J, Zhang W, et al. Chemical Engineering Journal, 2017, 313, 19.
[1] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[2] 张辉霞, 贾相华, 左桂鸿, 孙芳. 片状焦钒酸锌的制备及光催化性能[J]. 材料导报, 2021, 35(Z1): 48-50.
[3] 张勇, 郝永刚. 石墨烯及氧化石墨烯在纺织领域的应用[J]. 材料导报, 2021, 35(Z1): 78-82.
[4] 黄绪德, 刘欣. 利用维生素C和茶多酚还原氧化石墨烯及其表征[J]. 材料导报, 2021, 35(Z1): 83-86.
[5] 任世强, 于筱, 马帅, 刘琨, 王淋, 由晴. 植骨材料在口腔种植中的应用概况及进展[J]. 材料导报, 2021, 35(Z1): 94-99.
[6] 鲁明远, 韩保红, 赫万恒, 倪新华, 于金凤. 孔隙对陶瓷基复合材料强度影响的研究进展[J]. 材料导报, 2021, 35(Z1): 180-185.
[7] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[8] 谭松波, 王响成, 李送送. 柔性含铅γ辐射屏蔽材料的制备及性能[J]. 材料导报, 2021, 35(Z1): 328-330.
[9] 朱冬, 张亮, 吴文恒, 卢林, 倪晓晴, 宋佳, 赵金猛, 朱文华, 顾孙望, 单小龙. 钛基复合材料激光选区熔化增材制造成形技术研究进展[J]. 材料导报, 2021, 35(Z1): 347-351.
[10] 杨康, 李东辉, 郭义林, 马刚, 耿昊, 李群芳, 薛继佳. 某型四座电动飞机复合材料机翼剪切性能试验与分析[J]. 材料导报, 2021, 35(Z1): 485-488.
[11] 王瑞杰, 郭建业, 宋寒, 郭慧, 李文静. 酚醛气凝胶多功能复合材料的设计与性能[J]. 材料导报, 2021, 35(Z1): 548-551.
[12] 张凯, 桂泰江, 吴连锋, 郭莉莎, 郭灵敏. 导热绝缘聚合物复合材料的研究进展[J]. 材料导报, 2021, 35(Z1): 571-575.
[13] 孙朝海, 黄炎, 杨康, 姬书得, 岳玉梅. 工装模具对复合材料件固化变形影响的有限元分析[J]. 材料导报, 2021, 35(Z1): 607-612.
[14] 丁叁叁, 刘克健. 高速列车用碳纤维复合材料结构损伤修复门槛值研究[J]. 材料导报, 2021, 35(Z1): 613-616.
[15] 武海鹏. 复合材料层合板阻尼性能的预测与分析[J]. 材料导报, 2021, 35(Z1): 617-620.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed