Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 21-28    
  无机非金属及其复合材料 |
非贵金属催化剂催化硼氢化钠水解制氢的研究进展
王小炼1, 杨茂1, 刘永辉1, 张渝彬2, 冯威1
1 成都大学机械工程学院,成都 610106
2 成都工业学院自动化与电气工程学院,成都 611730
Research Progress of Hydrogen Production by Hydrolysis of Sodium Borohydride Catalyzed by Non-Noble Metal Catalysts
WANG Xiaolian1, YANG Mao1, LIU Yonghui1, ZHANG Yubin2, FENG Wei1
1 School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
2 School of Automation and Electrical Engineering, Chengdu Technological University, Chengdu 611730, China
下载:  全 文 ( PDF ) ( 2178KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硼氢化钠水解制氢具有安全方便、放氢温度适中、反应易于控制和制氢纯度高等优点,现已成为制氢技术中的研究热点。但纯硼氢化钠水解放氢速率缓慢、产氢率低,常需添加合适的催化剂以改善硼氢化钠水解的放氢速率。金属催化剂因其具有高的催化活性已被广泛研究。其中,贵金属由于价格昂贵限制了它们的使用,而非贵金属价格低且储量高。并且,近年来有研究发现某些非贵金属催化剂的催化活性有了显著提高。因此,从经济角度出发考虑,将非贵金属用于催化硼氢化钠水解制氢是非常可取的。本文结合近几年国内外非贵金属催化剂催化硼氢化钠水解的发展现状,介绍了非负载型催化剂和负载型催化剂的研究进展,并对其未来的发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王小炼
杨茂
刘永辉
张渝彬
冯威
关键词:  催化剂  非贵金属  水解  制氢  硼氢化钠    
Abstract: Hydrogen production by hydrolysis of sodium borohydride has the advantages of safety and convenience, moderate hydrogen release temperature, easy control of the reaction, and high purity of hydrogen production. It has become a research hotspot in hydrogen production technology. Hydrogen production speed of pure sodium borohydride hydrolysis is slow and the hydrogen production rate is low. Suitable catalysts are often added to improve the rate of hydrogen liberation from sodium borohydride hydrolysis. Metal catalysts have been widely studied because of their high catalytic activity. Among them, noble metals limit their use due to their high prices, while non-noble metals are low in price and high in reserves. Moreover, in recent years, studies have found that the catalytic activity of some non-noble metal catalysts has been significantly improved. Therefore, from an economic point of view, it is highly desirable to use non-noble metals to catalyze the hydrolysis of sodium borohydride to produce hydrogen. In this paper, the research progress of unsupported catalysts and supported catalysts was introduced based on the development status of non-noble metal catalysts for hydrolysis of sodium borohydride at home and abroad in recent years, and its future development trend was prospected.
Key words:  catalyst    non-noble metals    hydrolysis    hydrogen production    sodium borohydride
                    发布日期:  2021-07-16
ZTFLH:  O643.36  
  TQ116.2  
基金资助: 四川省教育厅(18ZB0133);四川省粉末冶金工程技术研究中心(SC-FMYJ2018-05);四川省应用基础研究计划(2018JY0062);成都大学研究项目(2018XZB17)资助
通讯作者:  wangxiaolian@cdu.edu.cn   
作者简介:  王小炼,成都大学机械工程学院讲师。2016年6月在四川大学材料科学与工程学院取得材料学专业博士学位。目前主要从事氢能与燃料电池技术、粉末冶金材料和量子化学计算的研究工作。主持和参加国家级和省部级科研项目多项,在International Journal of Hydrogen Energy、Journal of Power Sources和Acta Physica Sinica等刊物发表论文10余篇。杨茂,2020年6月毕业于成都大学,获得工学学士学位。现为成都大学机械工程学院硕士研究生,在王小炼老师的指导下进行研究。目前主要研究领域为化学储氢材料。
引用本文:    
王小炼, 杨茂, 刘永辉, 张渝彬, 冯威. 非贵金属催化剂催化硼氢化钠水解制氢的研究进展[J]. 材料导报, 2021, 35(Z1): 21-28.
WANG Xiaolian, YANG Mao, LIU Yonghui, ZHANG Yubin, FENG Wei. Research Progress of Hydrogen Production by Hydrolysis of Sodium Borohydride Catalyzed by Non-Noble Metal Catalysts. Materials Reports, 2021, 35(Z1): 21-28.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/21
1 Midilli A, Dincer I. International Journal of Hydrogen Energy, 2008, 33(16), 4209.
2 Midilli A, Ay M, Dincer I, et al. Renewable & Sustainable Energy Reviews, 2005, 9(3), 255.
3 张月. 钴基复合催化剂的制备及其催化性能研究. 硕士学位论文, 青岛科技大学, 2018.
4 Dincer I, Acar C. International Journal of Hydrogen Energy, 2015, 40(34), 11094.
5 张翔, 孙奎斌, 周俊波. 无机盐工业, 2010, 42(1), 9.
6 徐东彦, 张华民, 叶威. 化学进展, 2007, 19(10), 1598.
7 赵鹏程, 谢自立, 杨子芹, 等. 电源技术, 2007,31(12), 988.
8 Schlesinger H I, Brown H C, Finholt A E, et al. Journal of the American Chemical Society, 1953, 75(1), 215.
9 Schlesinger H I, Brown H C, Finholt A E. Journal of the American Che-mical Society, 1953, 75(1), 205.
10 Gonçalves A, Castro P, Novais A, et al. Chemical Engineering Transactions, 2007, 12, 243.
11 翟瑞华. 硼氢化钠水解制氢催化剂的研究. 硕士学位论文, 中国石油大学, 2011.
12 谢广文, 王丽娜, 李忠. 青岛科技大学学报:自然科学版, 2015, 36(1), 1.
13 Bozkurt G, Ozer A, Yurtcan A B. Energy, 2019, 180, 702.
14 Bozkurt G, Ozer A, Yurtcan A B. International Journal of Hydrogen Energy, 2018, 43(49), 22205.
15 Rakap M, Kalua E E, Özkar S. Journal of Alloys & Compounds, 2011, 509(25), 7016.
16 Jeong S U, Kim R K, Cho E A, et al. Journal of Power Sources, 2005, 144(1), 129.
17 Ghodke N P, Rayaprol S, Bhoraskar V, et al. International Journal of Hydrogen Energy, 2020, 45(33), 16591.
18 Guo Y P, Dong Z P, Cui Z K, et al. International Journal of Hydrogen Energy, 2012, 37(2), 1577.
19 Dai H B, Gao L L, Liang Y, et al. Journal of Power Sources, 2009, 195(1), 307.
20 Ding X L, Yuan X X, Jia C, et al. International Journal of Hydrogen Energy, 2010, 35(20), 11077.
21 Zhuang D W, Zhang J J, Dai H B, et al. International Journal of Hydrogen Energy, 2013, 38(25), 10845.
22 白莹, 吴锋, 吴川, 等. 现代化工, 2006, 26(4), 28.
23 Wang X P, Liao J Y, Li H, et al. International Journal of Hydrogen Energy, 2018, 43(37), 17543.
24 Izgi M S, Sahin O, Saka C. International Journal of Hydrogen Energy, 2015, 41(3), 1600.
25 Wang Y, Zou K L, Zhang D, et al. International Journal of Hydrogen Energy, 2020, 45(16), 9845.
26 马敬环, 苏彦铭, 刘莹. 天津工业大学学报, 2020, 39(1), 31.
27 Patel N, Fernandes R, Miotello A. Journal of Catalysis, 2010, 271(2), 315.
28 Guo Y P, Feng Q H, Ma J T. Applied Surface Science, 2013, 273, 253.
29 Brack P, Dann S E, Wijayantha K G U. Energy Science & Engineering, 2015, 3(3), 174.
30 刘楠, 沈研, 王艳, 等. 可再生能源, 2015, 33(12), 1880.
31 李赛, 王丽娜. 广东化工, 2016, 43(9), 25.
32 Guo J, Hou Y J, Li B, et al. International Journal of Hydrogen Energy, 2018, 43(32), 15245.
33 赵婷, 王丹, 王鑫林, 等. 辽宁化工, 2019, 48(9), 853.
34 Şahin Ö, Kilinç D, Saka C. Journal Energy Institute, 2015, 89(4), 617.
35 张月, 颜双, 孙丹丹, 等. 化工科技, 2017, 25(5), 1.
36 Şahin Ö, Kilinç D, Saka C. Separation Science & Technology, 2015, 50(13), 2050.
37 Wei L, Dong X L, Yang Y M, et al. International Journal of Hydrogen Energy, 2020, 45(18), 10745.
38 Liu B H, Li Z P, Suda S. Journal of Alloys & Compounds, 2006, 415(1-2), 288.
39 魏磊, 马麦霞, 付君宇, 等. 化工进展, 2017, 36(12), 4462.
40 Fernandes R, Patel N, Miotello A. International Journal of Hydrogen Energy, 2009, 34(7), 2893.
41 Huang X K, Wu D F, Cheng D J. Journal of Colloid & Interface Science, 2017, 507, 429.
42 Wei L , Cao X R, Ma M X, et al. Functional Materials Letters, 2018, 11(1), 1.
43 Wei L, Dong X L, Ma M X, et al. International Journal of Hydrogen Energy, 2018, 43(3), 1529.
44 Kassem A A, Abdelhamid H N, Fouad D M , et al. International Journal of Hydrogen Energy, 2019, 44(59), 31230.
45 Balbay A, Saka C. Energy Sources Part A Recovery Utilization & Environmental Effects, 2018, 40(7), 1.
46 Tignol P, Demirci U B. International Journal of Hydrogen Energy, 2019, 44(27), 14207.
47 Balbay A, Saka C. Energy Sources Part A-recovery Utilization and Environmental Effects, 2018, 40(20), 2442.
48 Deonikar V G , Rathod P V , Pornea A M , et al. Journal of Industrial and Engineering Chemistry, 2020, 86, 167.
49 Kim J H , Kim K T , Kang Y M , et al. Journal of Alloys & Compounds, 2004, 379(1-2), 222.
50 Guo S Q, Wu Q Q, Sun J, et al. International Journal of Hydrogen Energy, 2017, 42(33), 21063.
51 Li Z, Li H L, Wang L N, et al. International journal of Hydrogen Energy, 2014, 39(27), 14935.
52 Yang C C, Chen M S, Chen Y W. International Journal of Hydrogen Energy, 2011, 36(2), 1418.
53 Cheng J, Xiang C L, Zou Y J, et al. Ceramics International, 2015, 41(1), 899.
54 Shih Y J, Su C C, Huang Y H, et al. Energy, 2013, 54, 263.
55 Lu Y C, Chen M S, Chen Y W. International Journal of Hydrogen Energy, 2012, 37(5), 4254.
56 于晓飞, 鲍新侠, 李其明, 等. 无机盐工业, 2015, 47(1), 59.
57 Kaur A, Gangacharyulu D, Bajpai P K. In: 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA). Auckland, New Zealand, 2015, pp. 757.
58 魏磊, 马麦霞, 景学敏, 等. 中国有色金属学报, 2017, 27(8), 1651.
59 Kilinç D, Şahin Ö, Saka C. International Journal of Hydrogen Energy, 2018, 43(1), 251.
60 Chaugule A A, Tamboli A H, Sheikh F A, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2015, 484, 242.
61 Sayin E S, Bayrakceken A, Eroglu I. International Journal of Hydrogen Energy, 2012, 37(21), 16663.
62 Kong Q Q, Feng W , Xie X X, et al. Catalysis Letters, 2018, 148(12), 3771.
63 Wei Y S, Huang X K, Wang J Y, et al. International Journal of Hydrogen Energy, 2017, 42(41), 25860.
64 Gao Z T, Ding C M, Wang J W, et al. International Journal of Hydrogen Energy, 2019, 44(16), 8365.
65 杨在兴, 徐嘉宝, 黄起竟, 等. 沈阳大学学报(自然科学版), 2018, 30(6), 436.
66 Xu D Y, Zhang X Y, Zhao X, et al. International Journal of Energy Research, 2019, 43(8), 3702.
67 Wei L, Liu H Y, Wang Q, et al. Functional Materials Letters, Doi:10.1142/S1793604719500504.
68 Abu-Zied B M, Alamry K A. Journal of Alloys and Compounds, 2019, 798, 820.
69 Makiabadi M, Shamspur T, Mostafavi A. International Journal of Hydrogen Energy, 2020,45(3), 1706.
70 Baytar O. Acta Chimica Slovenica, 2018, 65(2), 407.
71 Didehban A, Zabihi M, Shahrouzi J R. International Journal of Hydrogen Energy, 2018, 43(45), 20645.
72 Rambabu K, Hai A, Bharath G, et al. International Journal of Hydrogen Energy, 2019, 44(28), 14406.
73 Zhang X L, Li C H, Qu J L, et al. Carbon Resources Conversion, 2019, 2(3), 225.
74 Soltani M, Zabihi M. International Journal of Hydrogen Energy, 2020, 45( 22), 12331.
75 Li J H, Hong X Y, Wang Y L, et al. Energy Storage Materials, 2020, 27, 187.
76 Xiang C L, Jiang D D, She Z, et al. International Journal of Hydrogen Energy, 2015, 40(11), 4111.
77 Cui Z K, Guo Y P, Ma J T. International Journal of Hydrogen Energy, 2016, 41(3), 1592.
78 苗强, 黄子健, 李其明, 等. 无机盐工业, 2018, 50(7),80.
79 Chou C C , Hsieh C H , Chen B H . Energy, 2015, 90(2), 1973.
80 Li Y, Hou X W, Wang J, et al. International Journal of Hydrogen Energy, 2019, 44(55), 29075.
81 李忠, 王丽娜, 王桂雪, 等. 燃料化学学报, 2015, 43(3), 372.
82 Al-Enizi A M, Nafady A, El-Halwany M M, et al. International Journal of Hydrogen Energy, 2019, 44(39), 21716.
83 贾若琨, 马海明, 杨晓航, 等. 吉林大学学报(理学版), 2015, 53(4), 779.
84 Prasad D , Patil K N , Sandhya N , et al. Applied Surface Science, 2019, 489, 538.
85 Huang Y Q, Wang Y, Zhao R X, et al. International Journal of Hydrogen Energy, 2008, 33(23), 7110.
86 Chinnappan A, Puguan J M C, Chung J, et al. Journal of Power Sources, 2015, 293, 429.
87 Li F, Arthur E E, La D, et al. Energy, 2014, 71, 32.
88 Bandal H A, Jadhav A R, Kim H. Journal of Alloys & Compounds, 2017, 699, 1057.
89 Wang Y, Lu Y S, Wang D, et al. International Journal of Hydrogen Energy, 2016, 41(36), 16077.
90 Huang Y Y, Wang K Y, Cui L, et al. Catalysis Communications, 2016, 87(47), 94.
91 Wei Y S, Wang M S, Fu W Y, et al. Journal of Alloys and Compounds, 2020, 836, 1.
92 赵士夺, 李芳, 李其明, 等. 应用化学, 2016, 33(6), 655.
93 Manna J, Roy B, Pareek D, et al. Catalysis, Structure & Reactivity, 2017, 3(4), 157.
94 Wang Y, Shen Y, Qi K Z, et al. Renewable energy, 2016, 89, 285.
95 李正, 姜妍彦. 大连工业大学学报, 2020, 39(1), 64.
96 Didehban A, Zabihi M, Babajani N. Polyhedron,Doi: 10.1016/j.poly.2020.114405.
97 Kıpc I, Kalpazan E. International Journal of Hydrogen Energy, 2020, 45(50), 26434.
98 Guo Y H, Zhang R Q, Hao W J, et al. International Journal of Hydrogen Energy, 2019, 45(1), 380.
99 梁志花, 李其明, 李芳, 等. 应用化工, 2016, 45(10), 1832.
100 Saka C, Eygi M S, Balbay A. International Journal of Hydrogen Energy, 2020, 45(30), 15086.
[1] 刘静, 高正阳, 王杰, 陈霈儒, 杨璐冰. 共掺杂改性TiO2光催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 42-47.
[2] 熊浩林, 韩秀梅, 张晓燕. 分子筛催化剂的发展与展望[J]. 材料导报, 2021, 35(Z1): 137-142.
[3] 吴国玉, 郑晔, 王明涌, 邢志军. 化学还原法制备高分散纳米铂粒子[J]. 材料导报, 2021, 35(Z1): 406-410.
[4] 刘子林, 林德海, 何发泉, 曹子雄, 王宝冬. 钠化焙烧法回收废SCR催化剂中钒和钨的浸出机理及浸出动力学研究[J]. 材料导报, 2021, 35(Z1): 429-433.
[5] 齐美丽, 李勉拓, 张梦娟, 吴艳玲. 双原子催化剂在电催化领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 481-484.
[6] 王凯, 冯东, 赵文波. 尿素醇解法制备甘油碳酸酯催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 541-547.
[7] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[8] 伊志豪, 孙杰, 李吉刚, 周添, 卫寿平, 解洪嘉, 杨育霖. 花球状CuO/CeO2材料上HCN的催化消除[J]. 材料导报, 2021, 35(8): 8017-8022.
[9] 吴彦霞, 梁海龙, 陈鑫, 陈琛, 王献忠, 戴长友, 胡利明, 陈玉峰. 元素(Ce、Co、La、Sn)掺杂对V-Mo/TiO2催化剂脱硝活性的影响[J]. 材料导报, 2021, 35(6): 6020-6027.
[10] 赵晨, 武文粉, 孟子衡, 李会泉, 王晨晔, 王兴瑞. 废SCR脱硝催化剂中砷元素赋存形态与氧化碱浸脱除[J]. 材料导报, 2021, 35(5): 5001-5010.
[11] 芦宝华, 徐宁, 陈晓彤, 谢晓红, 李久明. 硼氢化钠还原烯烃和炔烃的研究进展[J]. 材料导报, 2021, 35(5): 5214-5221.
[12] 王杏, 陈洋, 曹桂莲, 邓承继, 丁军, 余超, 祝洪喜. 氮化温度对MgO-C耐火材料结构和性能的影响[J]. 材料导报, 2021, 35(12): 12053-12056.
[13] 赵丹丹, 王舒笑, 顾菁, 单锐, 袁浩然. 基于固废炭基催化剂的稻壳热解气体提质研究[J]. 材料导报, 2021, 35(11): 11001-11006.
[14] 胡洁琼, 谢明, 陈永泰, 杨有才, 方继恒, 范小通, 李爱坤. Au-Pt-Ni三元催化剂体系纳米相图的研究进展[J]. 材料导报, 2020, 34(Z2): 338-343.
[15] 赵晶璨, 王环江, 周国永, 宝冬梅, 罗迎春. 钯催化末端炔烃羰基化研究进展[J]. 材料导报, 2020, 34(Z2): 543-548.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed