Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 30-36    
  无机非金属及其复合材料 |
柔性自支撑纳米结构电极的研究进展
张曦元1, 康建立1,2
1 天津工业大学材料科学与工程学院,天津 300387
2 天津大学材料科学与工程学院,天津 300072
Research Progress of Flexible Self-supporting Nanostructure Electrodes
ZHANG Xiyuan1, KANG Jianli1,2
1 School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
2 School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
下载:  全 文 ( PDF ) ( 4705KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着对新型储能设备的需求越来越热点化,各式各样的新能源器件取得了实质性的进步,电子设备也逐步向柔性化、轻量化方向发展。柔性电池应用前景广阔,受到越来越多的关注。本文主要介绍了柔性锂离子电池纳米电极材料的发展现状及制备方法,特别介绍了将活性物质负载于常规金属柔性集流体、柔性碳基材料以及其他新材料的开发与应用。最后对柔性电极发展过程中存在的问题进行了总结并对其未来的发展方向与面临的挑战进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张曦元
康建立
关键词:  锂离子电池  柔性自支撑电极  柔性碳基材料  金属集流体    
Abstract: As the demand for new energy storage equipment becomes hotter, various new energy devices have undergone substantial development, and electronic equipment has gradually developed in the direction of flexibility and lightweight. Flexible batteries are promising to be widely used and have received more and more attention. This review mainly introduces the development status and preparation methods of flexible lithium-ion battery electrodes, especially the development and application of the active materials loaded on conventional flexible metals, carbon-based materials, as well as other new materials. Finally, the problems existing in the current development of flexible batteries are summarized and the future development direction and challenges are prospected.
Key words:  lithium-ion batteries    flexible self-support electrodes    flexible carbon-based materials    metals current collectors
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TM912  
通讯作者:  kangjianli@aliyun.com   
作者简介:  张曦元,2018年6月毕业于辽宁科技大学,获得材料成型及控制工程专业工学学士学位。现为天津工业大学材料科学与工程学院硕士研究生。在康建立教授的指导下从事柔性锂离子电池的研究。康建立,天津大学材料科学与工程学院教授。天津大学博士毕业,曾工作于美国伊利诺伊理工大学(访问学者)、日本东北大学(助手研究员)和天津工业大学(天津市特聘教授)。目前主要从事三维纳米多孔结构储能与催化电极的设计和应用研究。
引用本文:    
张曦元, 康建立. 柔性自支撑纳米结构电极的研究进展[J]. 材料导报, 2020, 34(Z2): 30-36.
ZHANG Xiyuan, KANG Jianli. Research Progress of Flexible Self-supporting Nanostructure Electrodes. Materials Reports, 2020, 34(Z2): 30-36.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/30
1 Huang Q, Wang D, Zheng Z.Advanced Energy Materials, 2016, 6(22),1600783.
2 Zhong J, Zhang Y, Zhong Q, et al.ACS Nano, 2014, 8(6), 6273.
3 Yan C, Kang W, Wang J, et al.ACS Nano, 2014, 8(1),316.
4 Li L, Wu Z, Yuan S, et al.Energy & Environmental Science, 2014, 7(7), 2101.
5 Stoppa M, Chiolerio A.Sensors, 2014, 14(7),11957.
6 Kwon Y H, Woo S W, Jung H R, et al.Advanced Materials, 2012, 24(38), 5192.
7 Pu X, Li L, Song H, et al.Advanced Materials, 2015, 27(15), 2472.
8 Seng K H, Liu J, Guo Z P, et al.Electrochemistry Communications, 2011, 13(5), 383.
9 Dong X, Chen L, Su X, et al.Angewandte Chemie International Edition, 2016, 55(26), 7474.
10 Zhou J, Li X, Yang C, et al.Advanced Materials, 2019, 31(3), 1804439.
11 Lin D, Liu Y, Liang Z, et al.Nature nanotechnology, 2016, 11(7),626.
12 Liu Y, Lin D, Yuen P Y, et al.Advanced Materials, 2017, 29(10), 1605531.
13 Gao Z, Zhang Y, Song N, et al.Electrochimica Acta, 2017, 246, 507.
14 Sun Q, Fang X, Weng W, et al.Angewandte Chemie, 2015, 127(36), 10685.
15 Wang C, Wang X, Yang Y, et al.Nano Letters, 2015, 15(3), 1796.
16 He Y, Chen W, Li X, et al.ACS Nano, 2013, 7(1), 174.
17 Horng Y Y, Lu Y C, Hsu Y K, et al.Journal of Power Sources, 2010, 195(13), 4418.
18 Shown I, Ganguly A, Chen L C, et al.Energy Science & Engineering, 2015, 3(1), 2.
19 Xiong Z, Liao C, Han W, et al.Advanced Materials, 2015, 27(30), 4469.
20 Chang J, Shang J, Sun Y, et al.Nature Communications, 2018, 9(1), 1.
21 Liu Q C, Liu T, Liu D P, et al.Advanced Materials, 2016, 28(38),8413.
22 Zheng S, Wu Z S, Zhou F, et al.Nano Energy, 2018, 51, 613.
23 Yang C, Ji X, Fan X, et al.Advanced Materials, 2017, 29(44), 1701972.
24 Zhou B, He D, Hu J, et al.Journal of Materials Chemistry A, 2018, 6(25), 11725.
25 Liu W, Song M S, Kong B, et al.Advanced Materials, 2017, 29(1), 1603436.
26 Cao Y, Zhang A Q, Luo H W, et al.Inorganic Chemistry Communications, 2020, 113, 107769.
27 Tao W, Wang M, Zhu B, et al. Electrochimica Acta, 2020, 334, 135569.
28 Ying Z, Zhao S, Yue J, et al.Journal of Alloys and Compounds, 2020, 821, 153437.
29 Yang H, Chang L, Wang L, et al. Ionics, 2020, 26,3281.
30 Obodo R M, Shinde N M, Chime U K, et al.Current Opinion in Electrochemistry, 2020, 21, 242.
31 Wang S G, Lin J, Fan C Y, et al. Journal of Alloys and Compounds, 2020, 830,154648.
32 Huang L, Guan Q, Cheng J, et al.Chemical Engineering Journal, 2018, 334, 682.
33 Gao S, Chen G, Dallagnese Y, et al.Chemistry-A European Journal, 2018, 24(51), 13535.
34 Abdollahi A, Abnavi A, Ghasemi S, et al.Electrochimica Acta, 2019, 320, 134598.
35 Wang R, Xu C, Sun J, et al. Nanoscale, 2013, 5(15), 6960.
36 Wang M, Huang Y, Zhu Y, et al.Journal of Alloys and Compounds, 2019, 774, 601.
37 Zhou X, Liu Y, Du C, et al.ACS Applied Materials & Interfaces, 2018, 10(35), 29638.
38 Yao Y, Zhu Y, Huang J, et al.Electrochimica Acta, 2018, 271, 242.
39 Xu P, Zhang Z, Zhang H, et al.Frontiers in Chemistry, 2020, 8, 159.
40 Xia J, Tian R, Guo Y, et al.Materials & Design, 2018, 156, 272.
41 Wang H G, Li W, Liu D P, et al.Advanced Materials, 2017, 29(45), 1703012.
42 Zhu J, Wang T, Fan F, et al. ACS Nano, 2016, 10(9), 8243.
43 Xu W, Zhao K, Zhang L, et al. Journal of Alloys and Compounds, 2016, 654, 357.
44 Inamdar A I, Chavan H S, Ahmed A T A, et al. Journal of Alloys and Compounds, 2020, 154593.
45 Jia S, Wang Y, Liu X, et al. Nano Energy, 2019, 59, 229.
46 Zhu G N, Wang Y G, Xia Y Y.Energy & Environmental Science, 2012, 5(5), 6652.
47 Hong Z, Wei M.Journal of Materials Chemistry A, 2013, 1(14), 4403.
48 Yu N, Zou L, Li C, et al.Applied Surface Science, 2019, 483, 85.
49 Wu J, Mi R, Li S, et al.RSC Advances, 2015, 5(32), 25304.
50 Chen H, Zhang Q, Wang J, et al.Journal of Materials Chemistry A, 2014, 2(22), 8483.
51 Zhang Q, Wang J, Xu D, et al.Journal of Materials Chemistry A, 2014, 2(11), 3865.
52 Yi T F, Peng P P, Han X, et al.Solid State Ionics, 2019, 329, 131.
53 Katzmann J, Hartling T.The Journal of Physical Chemistry C, 2012, 116(44), 23671.
54 Lee J, Seok J Y, Son S, et al.Journal of Materials Chemistry A, 2017, 5(47), 24585.
55 Shao S, Domotrov M, Guan N, et al.Nanoscale, 2010, 2(10), 2054.
56 Zhang S, Zhang Z, Kang J, et al.Electrochimica Acta, 2019, 320, 134542.
57 Zhang S, Zhang Z, Li H, et al.Chemical Engineering Journal, 2020, 383, 123097.
58 Li Q, Feng Y, Wang P, et al.Nanoscale, 2019, 11(11), 5080.
59 Zhang S, Zhang Z, Li H, et al.Chemical Engineering Journal, 2020, 383, 123097.
60 Zhang Y, Jiao Y, Liao M, et al.Carbon, 2017, 124, 79.
61 He Y, Chen W, Gao C, et al.Nanoscale, 2013, 5(19), 8799.
62 Wen L, Li F, Cheng H M.Advanced Materials, 2016, 28(22), 4306.
63 Luo J, Peng J, Zeng P, et al.Electrochimica Acta, 2020, 332, 135469.
64 Shi J, Wang S, Wang Q, et al.Journal of Power Sources, 2020, 446, 227345.
65 Li J, Deng Y, Leng L, et al.Journal of Power Sources, 2020, 450, 227725.
66 Tang C, Zhang H, Jiao D, et al.Materials & Design, 2019, 162, 52.
67 Narsimulu D, Nagaraju G, Sekhar S C, et al.Applied Surface Science, 2019, 497, 143795.
68 Samuel E, Jo H S, Joshi B, et al.Electrochimica Acta, 2017, 231, 582.
69 Chen Y, Yuan X, Yang C, et al.Journal of Alloys and Compounds, 2019, 777, 127.
70 An C, LIi C, Tang H, et al.Journal of Alloys and Compounds, 2020, 816, 152580.
71 Wu K, Xu G, Pan D, et al.Chemical Engineering Journal, 2020, 385,123456.
72 Raccichin R, Varzi A, Passerini S, et al.Nature Materials, 2015, 14(3), 271.
73 Qiu Y, Rong G, Yang J, et al.Advanced Energy Materials, 2015, 5(23), 1501369.
74 Wang F, Wang H, Mao J.Journal of Materials Science, 2019, 54(1), 36.
75 Gwon H, Kim H S, Lee K U, et al.Energy & Environmental Science, 2011, 4(4), 1277.
76 Fu J, Kang W, Guo X, et al. Journal of Energy Chemistry, 2020, 47, 172.
77 Xie Q, Zhang Y, Zhu Y, et al.Electrochimica Acta, 2017, 247, 125.
78 Harris K J, Bugnet M, Naguib M, et al.The Journal of Physical Chemistry C, 2015, 119(24),13713.
79 Naguib M, Mochalin V N, Barsoum M W, et al.Advanced Materials, 2014, 26(7), 992.
80 Liu Y T, Zhang P, Sun N, et al.Advanced Materials, 2018, 30(23), 1707334.
81 Wang C Y, Zheng Z J, Feng Y Q, et al.Nano Energy, 2020,74,104817.
[1] 王鸣, 黄俊涛, 程丽丽, 周律法, 任亚航, 王学雷. 锂离子电池负极用Li4Ti5O12@C复合材料的制备及电化学性能[J]. 材料导报, 2020, 34(Z2): 19-23.
[2] 潘福森, 沈龙, 童磊, 聂顺军, 李虹. 喷雾造粒制备纳米硅-硬碳复合材料及其性能[J]. 材料导报, 2020, 34(Z1): 132-136.
[3] 赵立敏, 王惠亚, 解启飞, 邓秉浩, 张芳, 何丹农. 车用动力锂离子电池纳米硅/碳负极材料的制备技术与发展[J]. 材料导报, 2020, 34(7): 7026-7035.
[4] 浦文婧, 芦伟, 谢凯, 郑春满. 宽温型锂离子电池有机电解液的研究进展[J]. 材料导报, 2020, 34(7): 7036-7044.
[5] 张伟业, 刘毅, 郭洪武. 木质基电化学储能器件的研究进展[J]. 材料导报, 2020, 34(23): 23001-23008.
[6] 袁梅梅, 徐汝辉, 姚耀春. 锂离子电池正极材料LiFePO4的表面碳包覆改性研究进展[J]. 材料导报, 2020, 34(19): 19061-19066.
[7] 李晶, 秦元斌, 宁晓辉. 改进高温固相法制备磷酸锰铁锂正极材料[J]. 材料导报, 2020, 34(16): 16001-16005.
[8] 邢宝林, 鲍倜傲, 李旭升, 史长亮, 郭晖, 王振帅, 侯磊, 张传祥, 岳志航. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068.
[9] 吴永健, 唐仁衡, 欧阳柳章, 李文超, 王英, 黄玲. 分散剂对油性石墨烯导电浆料性能的影响及其在锂电池中的应用[J]. 材料导报, 2020, 34(12): 12030-12035.
[10] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[11] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[12] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[13] 杨果, 马壮, 杨绍斌, 董伟, 沈丁. 低比表面积酚醛树脂硬碳的制备及电化学性能[J]. 材料导报, 2019, 33(22): 3820-3824.
[14] 田柳文, 于华, 章文峰, 陈涛, 黄跃龙, 郑先峰. 锂离子电池的明星材料磷酸铁锂:基本性能、优化改性及未来展望[J]. 材料导报, 2019, 33(21): 3561-3579.
[15] 张文魁, 王佳, 李姣姣, 周晓政, 叶张军, 黄辉, 甘永平, 夏阳. 高安全性PEO-Al2O3复合隔膜的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3512-3519.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed