Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 24-29    
  无机非金属及其复合材料 |
加入增韧材料提高TiO2复合纳米电极的力学和电化学性能
张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙
天津工业大学机械工程学院,天津 300387
Adding Toughening Materials to Improve the Mechanical and Electrochemical Properties of TiO2 Composite Nanoelectrodes
ZHANG Pengfei, QIAO Zhijun, ZHANG Zhijia, YU Zhenyang, ZHAO Tan, GOU Jinlong
Tianjin Polytechnic University, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 6256KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了改善传统钛复合薄膜电极力学性能较差的问题,制备了力学性能优异并且具有高比容量的多孔钛连续复合增韧薄膜并将其作为锂电池的负极材料。 通过非溶剂置相分离法与高温烧结相结合的方法制备出力学性能优异、空间利用率高的多孔钛复合增韧平板膜然后选择了最佳阳极氧化条件对其进行表面修饰,生长TiO2纳米管,最后经过退火处理得到多孔钛连续复合增韧薄膜电极。实验以3 μm粒径钛粉和钛丝直径100 μm、厚度100 μm的钛网为原料,N-甲基-2-吡咯烷酮、聚乙烯吡咯烷酮、聚丙烯腈为添加剂制备多孔钛复合增韧平板膜生坯,将生坯在氩气保护下经1 000 ℃烧结,得到孔径为 2~8 μm的多孔钛复合增韧平板膜。采用阳极氧化法在多孔钛复合增韧平板膜和钛网上直接生长TiO2纳米管,制得多孔钛连续复合增韧薄膜电极。该复合薄膜电极作为锂电池的负极材料具有良好的电化学性能,其在100 μA/cm2电流密度下,比容量可以稳定在1 250 μAh/cm2左右,即使电流密度增加到500 μA/cm2,比容量仍能保持在950 μAh/cm2。这种经过增韧处理的钛复合增韧薄膜电极的力学性能相比单一的TiO2薄膜电极得到巨大提升,进一步提高了电极在反应过程中的结构稳定性,同时新的三维多孔骨架结构与无增韧材料钛网的多孔钛薄膜电极相比容量提高20%~30%。本工作通过以同材料作为增韧材料制备复合薄膜增韧电极的方法,不仅改善了TiO2薄膜电极力学性能差的问题,还进一步提高了其比容量和循环稳定性,为TiO2复合材料作为锂电池负电极材料提供了新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张鹏斐
乔志军
张志佳
于镇洋
赵潭
苟金龙
关键词:  增韧处理  钛网  阳极氧化  TiO2纳米管  力学性能  钛复合薄膜电极    
Abstract: In order to improve the problem of poor mechanical properties of traditional titanium composite film electrodes, a porous titanium continuous composite toughened film with excellent mechanical properties and high specific capacity was prepared as a negative electrode material for lithium batteries. In this paper, a porous titanium composite toughened flat film with excellent mechanical properties and high space utilization was prepared by a combination of non-solvent phase separation method and high-temperature sintering, and then the optimal anodizing condition was selected for surface modification to grow TiO2 nanometer. The tube was finally annealed to obtain a continuous composite toughened porous tita-nium film electrode.In this experiment, a titanium mesh with a diameter of 3 μm and a titanium wire with a diameter of 100 μm and a thickness of 100 μm were used as raw materials,and N-methyl-2-pyrrolidone, polyvinylpyrrolidone, and polyacrylonitrile were used as additives to prepare po-rous titanium composite toughened flat film.The film was sintered at 1 000 ℃ under the protection of argon gas to obtain a porous titanium compo-site toughened flat film with a pore diameter of about 2—8 μm. The anodic oxidation method was used to directly grow TiO2 nanotubes on the po-rous titanium composite toughened flat film and the titanium mesh to prepare the porous titanium continuous composite tougheneid film electrode. The composite film electrode has good electrochemical performance as an anode electrode material for lithium batteries. Its specific capacity can be stabilized at about 1 250 μAh/cm2 at a current density of 100 μA/cm2. Even if the current density is increased to 500 μA/cm2, the specific capacity can still be maintained at 950 μAh/cm2. Compared with a single TiO2 thin film electrode, the toughened titanium composite toughened film electrode has significantly improved mechanical properties,which further improves the structural stability during the reaction. At the same time, the capacity of the new three-dimensional porous framework structure is 20%~30% higher than that of the porous titanium film electrode without the toughening material titanium mesh. This work uses the same material as the toughening material to prepare composite thin-film electrodes, which not only improves the problem of poor mechanical properties of TiO2 thin-film electrodes, but also further improves its specific capacity and cycle stability. It provides a new idea for TiO2 composite material to be used as a negative electrode material for lithium batteries.
Key words:  toughening treatment    titanium mesh    titanium dioxide nanotube    TiO2 nanotubes    mechanical behavior    titanium composite film electrode
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TQ131.1  
基金资助: 天津市教委科研计划项目(2017KJ075)
通讯作者:  zjqtjpu@163.com   
作者简介:  张鹏斐,2017年6月毕业于晋中学院,获得工学学士学位。现为天津工业大学机械工程学院硕士研究生,在乔志军教授的指导下进行研究。主要研究方向为新能源材料与锂离子电池。乔志军,博士,副教授,主要研究方向为新能源材料与电化学。
引用本文:    
张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
ZHANG Pengfei, QIAO Zhijun, ZHANG Zhijia, YU Zhenyang, ZHAO Tan, GOU Jinlong. Adding Toughening Materials to Improve the Mechanical and Electrochemical Properties of TiO2 Composite Nanoelectrodes. Materials Reports, 2020, 34(Z2): 24-29.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/24
1 Goodenough J B, Kim Y. Chemistry of Materials, 2010, 22(3), 587.
2 Aurbach D, Zinigrad E, CohenY, et al. Solid State Ionics, 2002, 148, 405.
3 Besenhard J, Yang J O, Winter M. Journal of Power Sources, 1997, 68, 87.
4 孟瑞晋, 侯宏英, 刘显茜, 等. 硅酸盐通报, 2016, 35(1), 30.
5 王杰.锂离子电池负极材料TiO2及Li4Ti5O12的改性制备及其电化学性质. 硕士学位论文,南京航空航天大学, 2014.
6 梅庆虎.纳米TiO2的形貌控制合成及其光电性能研究. 硕士学位论文,齐鲁工业大学, 2013.
7 王刚.介孔TiO2微球锂离子电池性能的研究. 硕士学位论文,南京大学, 2013.
8 Chen Z H, Belharouak I, Sun Y K, et al.Advanced Functional Materials, 2013, 23, 959.
9 Ji L, Lin Z, Alcoutlabi M, et al. Energy & Environmental Science, 2011, 4, 2682.
10 Lakshmi-Narayana A, Zhang L, Jiao C, et al. Ceramics International, 2020,5, 854.
11 梁砚琴. TiO2纳米管的制备及改性研究. 博士学位论文,天津大学, 2012.
12 康建立, 任增英. 天津工业大学学报, 2018, 37(1), 1.
13 王海涛, 王威, 夏晓明, 等.天津工业大学学报, 2017, 36(1), 8.
14 Zhang L, Zhang Y Q, Jiang Y H, et al.Vacuum, 2015, 122, 187.
15 Zhang F M,Wang L L, Li P, et al. Advance Materials Engineering, 2016, 19(2), 1.
16 Regoninia D,Satkab A, Jaroenworaluck A, et al. Electrochimica Acta, 2012, 74, 244.
17 Lamberti A, Garino N, Sacco A, et al. Electrochimica Acta, 2013, 102, 233.
18 Kim J H, Zhu K, Kim J Y, et al. Electrochimica Acta, 2013, 88, 123.
19 黄有国, 郑锋华, 任孟德, 等. 无机材料学报, 2013, 28(11), 1228.
20 赵骏, 乔志军, 张志佳, 等.表面技术, 2018 (12), 18.
21 Zhang Z J, Zeng Q Y, Chou S L, et al.Electrochimica Acta, 2014, 133, 570.
22 Zhao S, Zhu Y, Qian Y, et al.Materials Letters, 2020, 265, 127418.
23 Choi S I, Jung E J, Park M, et al.Applied Surface Science, 2020,508, 145237.
24 Wei W, Ihrfors C, Björefors F, et al.ACS Applied Energy Materials, 2020,35, 4638.
25 Tao W, Wang M, Zhu B, et al.Electrochimica Acta, 2020, 334, 135569.
[1] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[2] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[3] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[4] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[5] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[6] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[7] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[8] 栾吉瑜, 王保杰, 许道奎, 孙杰. 镁锂合金表面腐蚀防护研究进展[J]. 材料导报, 2020, 34(Z2): 441-446.
[9] 雷达, 王海林, 周彪, 李贤, 包爽. 铝合金-低碳钢异种金属电阻点焊工艺研究[J]. 材料导报, 2020, 34(Z2): 465-468.
[10] 车会凌, 赵元轶, 冉雄雄, 董皓月, 匡颖, 高姗姗. 不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J]. 材料导报, 2020, 34(Z2): 484-489.
[11] 黄爱宾, 刘彩凤, 张晓惠. 聚乳酸共混的研究进展[J]. 材料导报, 2020, 34(Z2): 586-589.
[12] 李沛欣, 袁凌, 潘磊, 刘伟超, 周文明, 任拓. MW级风电叶片用聚氨酯涂料的研究进展[J]. 材料导报, 2020, 34(Z2): 594-597.
[13] 张绍康, 王茹, 徐玲琳, 钟世云, 张国防, 王培铭. 羟乙基甲基纤维素改性水泥砂浆的物理力学性能和孔隙率[J]. 材料导报, 2020, 34(Z2): 607-611.
[14] 孙鹏飞, 黄舰, 吕平, 张锐, 方志强. 聚脲涂覆建筑结构抗爆性能研究进展[J]. 材料导报, 2020, 34(Z2): 623-630.
[15] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed