Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 557-562    
  高分子与聚合物基复合材料 |
废弃高抗冲聚苯乙烯高值化再利用的研究进展
张通姗1, 徐海萍1, 徐世豪1, 廖杨科1, 熊维2
1 上海第二工业大学工学部环境与材料学院,上海 201209;
2 上海睿莫环保新材料有限公司,上海 201209
Research Progress on High Value Reuse of Waste High Impact Polystyrene
ZHANG Tongshan1, XU Haiping1, XU Shihao1, LIAO Yangke1, XIONG Wei2
1 School of Environment and Materials, Ministry of Engineering, University of Polytechnic Shanghai, Shanghai 201209, China;
2 Shanghai Re-mall Environmental New Material Co., Ltd., Shanghai 201209, China
下载:  全 文 ( PDF ) ( 2057KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高抗冲聚苯乙烯(HIPS)以其优异的力学性能在高分子塑料领域发挥着重要作用,短短数年内其生产量已直逼传统的丙烯腈-丁二烯-苯乙烯共聚物(ABS)聚合物树脂。作为一类优异的聚合物树脂材料,HIPS在工程(特别是电器和计算机)材料领域表现出巨大的优势:具有良好的尺寸稳定性;耐热性强,具有良好的冲击韧性强度;易加工,可以通过添加合适的填料来开发新型功能型材料等。
然而,基于科技创新化发展,电子产品的发展日新月异,塑料材料的大量废弃造成了高分子材料资源的流失和自然环境的破坏。因此,包含废弃HIPS在内的废塑料再生技术得到了迅速发展,而废弃HIPS的高值化再利用也推动了再生塑料产业的发展。
本文就国内外有关废弃HIPS高值化再利用的研究进展进行了综述,主要从废弃HIPS的物质再生和能量再生角度出发,论述了目前对其进行的熔融共混改性、工业回收利用以及焚烧热裂解回收。其中,熔融共混改性是我国实现废弃HIPS树脂再生循环利用的主要方式,根据共混改性工艺的不同可分为物理再生利用和物化再生利用两种。而根据共混材料种类的差异,现已初步明确橡胶类弹性体、有机材料及无机纳米材料对废弃HIPS树脂进行的单一或协同改性效果较好。总体来讲,废弃HIPS的高值化再利用为社会带来了巨大的经济和环境效益,在废塑料再生领域发挥着积极的推动作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张通姗
徐海萍
徐世豪
廖杨科
熊维
关键词:  废弃HIPS  熔融共混改性  物理再生  物化再生    
Abstract: High impact polystyrene (HIPS) plays an important role in the field of polymer plastics due to its excellent mechanical properties. In a few years, its output has been directly equal to that of ABS (acrylonitrile-butadiene-styrene copolymer) polymer resin.As a kind of excellent polymer resin material, HIPS has shown great advantages in engineering(especially in electrical and computer) material field: good dimensional stability; strong heat resistance, good impact toughness; easy processing, and can be processed into various functional materials by adding appropriate fillers. However, the development of science and technology innovation ushered in the rapid development of electronic products. The waste of plastic materials caused the loss of polymer resources and the damage to the natural environment. Therefore, the recycling technology of waste plastics including waste hips has developed rapidly, and the high value reuse of waste hips has also promoted the development of recycled plastics industry. In this paper, the research progress of high-value reuse of waste HIPS at home and abroad is reviewed. The melt blending modification, industrial recycling and incineration pyrolysis recovery of waste HIPS are discussed from the point of view of material and energy regeneration. Among them, melt blending modification is the mainway to realize recycling of waste HIPS resin in China. According to the different blending modification process, it can be divided into physical recycling and physicochemical recycling. According to the different types of blends, it has been initially clear that rubber elastomers, organic materials and inorganic nanomaterials have better single or synergistic modification effect on waste HIPS resin. Generally speaking, the high value reuse of waste HIPS has brought enormous economic and environmental benefits, and plays an active role in promoting the recycling of waste plastics.
Key words:  waste HIPS    melt blending modification    physical regeneration,physicochemical regeneration
                    发布日期:  2020-07-01
ZTFLH:  TB33  
基金资助: 上海市自然科学基金(16ZR1412400;15ZR1417100);上海市高原学科-环境科学与工程(资源循环科学与工程);国家自然科学基金(51607109);上海第二工业大学重点学科(材料科学与工程,XXKYS1601)
作者简介:  张通姗,上海第二工业大学硕士研究生,于2017年12月参与上海睿莫环保新材料有限公司校企合作项目。2017年6月,在河南工程学院获得环境工程专业工学学士学位;2020年6月,在上海第二工业大学获得环境工程专业硕士学位;徐海萍,女,1966 年12月生,博士,教授。1988年本科毕业于天津大学无机非金属材料专业;2005年博士毕业于太原理工大学化学工程与技术专业;2007年北京化工大学材料科学与工程博士后出站。2012.7—2013.8期间在美国宾州州立大学材料研究所做高级访问学者。2008年至今任上海第二工业大学工学部环境与材料工程学院教师。研究方向为功能高分子及其复合材料在储能、电子线路过流过压保护等方面的应用开发,包括介电高分子储能材料与器件、聚合物基热敏电阻材料与器件等。主持并完成上海市科委基础研究重点项目1项;上海市教委基础研究重点项目1项;上海市科促会“联盟计划”2项。
引用本文:    
张通姗, 徐海萍, 徐世豪, 廖杨科, 熊维. 废弃高抗冲聚苯乙烯高值化再利用的研究进展[J]. 材料导报, 2020, 34(Z1): 557-562.
ZHANG Tongshan, XU Haiping, XU Shihao, LIAO Yangke, XIONG Wei. Research Progress on High Value Reuse of Waste High Impact Polystyrene. Materials Reports, 2020, 34(Z1): 557-562.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/557
1 李志丹.四官能度过氧化物在高抗冲聚苯乙烯制备中的应用.硕士学位论文,浙江大学,2017.
2 乔冰.废弃家电HIPS和ABS共混体系相容性能与力学性能的研究.博士学位论文,中北大学,2016.
3 Stenvall E, Tostar S, Boldizar A, et al. Waste Management,2013,33(4),16.
4 罗京科,李志杰.橡塑技术与装备,2019,45(4),45.
5 王盼.废旧高抗冲聚苯乙烯的高值化回收再利用.硕士学位论文,中北大学,2016.
6 Cafiero L, Fabbri D, Trinca E, et al. Journal of Thermal Analysis & Ca-lorimetry,2015,121(3),1.
7 秦黎明.石化技术,2012(3),21.
8 次立杰,时伟,高岩磊,等.化工新型材料,2010,38(6),76.
9 时伟,刘占荣,李中秋,等.塑料科技,2015,43(7),36.
10 刘振洋,揣成智.塑料,2016,45(2),51.
11 赵静,魏东亚,王兆波.特种橡胶制品,2013,28(5),9.
12 赵洪玲,王兆波.合成橡胶工业,2010,33(4),289.
13 官习鹏,周魏华,诸泉,等.工程塑料应用,2011,39(1),21.
14 刘晶如,夏阳阳,高力群,等.材料工程,2017,51(5),13.
15 Corrêa A C, De Santi C R, Manrich S. Macromolecular Symposia,2006,245-246(1),611.
16 吴晓露,李迎春,武海花,等.材料导报:研究篇,2018,32(7),183.
17 戴坤添,安瑛,李长金.塑料,2017,86(1),77.
18 王盼,李迎春.高分子材料科学与工程,2015,31(5),77.
19 王盼,李迎春,贺茂勇,等.高分子材料科学与工程,2015,31(5),77.
20 吴晓露.基于老化降解机理的废旧ABS、HIPS改性研究.硕士学位论文,中北大学,2018.
21 Chatterjee A, Mishra S. Journal of Polymer Research,2013,20(10),249.
22 陈烈强,胡亚林.2015年中国环境科学学会学术年会,广州,2010.
23 刘志维,苑会林.塑料工业,2009,37(8),41.
24 张艺馨. HIPS/BRTPV及HIPS/WGRTTPE的制备、结构与性能研究.硕士学位论文,青岛科技大学,2012.
25 Stenvall E, Tostar S, Boldizar A, et al. Waste Management,2013,33(4),915.
26 Hirayama D, Saron C. Waste Management & Research,2015,33(6),543.
27 Miloudi M, Dascalescu L, Li J, et al. IEEE Transactions on Dielectrics and Electrical Insulation,2013,20(5),1510.
28 Hirayama D, Saron C. Polymer,2018,135,271.
29 Perrin D, Mantaux O, Ienny P, et al. Waste Management,2016,DOI:S0956053X16303609.
30 Vazquez Y V, Barbosa S E. Journal of Polymers and the Environment,2016,21(32),31.
31 孔宇飞,李迎春,宋晶晶,等.功能材料,2015,33(24),1.
32 孔宇飞.增容废弃家电PP和HIPS共混体系的结构与性能研究.博士学位论文,中北大学,2018.
33 Kong Y, Li Y, Hu G, et al. Polymer,2018,2(51),31.
34 李迎春,贺茂勇.材料导报:研究篇,2017,63(4),41.
35 李婷婷.HIPS/红麻纤维复合材料性能研究.硕士学位论文,大连工业大学,2013.
36 陈尔凡,白宇,马驰,等.化工新型材料,2016(4),196.
37 罗少刚,王静荣,徐海萍,等.上海第二工业大学学报,2016,33(2),122.
38 Mousavi M, H?gsaa B, Fini E H. Applied Surface Science,2019,473,750.
39 李志杰,罗京科.再生资源与循环经济,2019,12(7),30.
40 Grause G, Fonseca J D, Tanaka H, et al. Polymer Degradation and Stability,2015,112,86.
41 Peng S, Liang S, Yu M, et al. Journal of Material Cycles and Waste Management,2014,16(1),178.
42 Sekhar V C, Nampoothiri K, Mohan A J, et al. Journal of Hazardous Materials,2016,5(398),46.
43 Zulfi A, Munir M M, Hapidin D A,et al. Materials Research Express,2014,5(3),35.
44 Haryono A, Harmami S B. Advanced Materials Research,2012,486,426.
45 Senthil Kumar K, Baskar K. Journal of Hazardous, Toxic, and Radioactive Waste,2015,19(3),04014042.
46 Dachowski R, Kostrzewa P. Procedia Engineering,2016,161,754.
47 Alston S M, Clark A D, Arnold J C, et al. Environmental Science & Technology,2011,45(21),9380.
48 Salbidegoitia J A, Fuentes E G, María P. Journal of Material Cycles & Waste Management,2016,19(2),1.
49 Acomb J C, Nahil M A, Williams P T. Journal of Analytical and Applied Pyrolysis,2013,103,320.
50 Antonakou E V, Kalogiannis K G, Stephanidis S D, et al. Waste Management,2014,34(12),2487.
[1] 刘国熠, 赵晓明, 刘元军, 谌玉红. 不同隔热填料对双层涂层柔性复合材料热防护性能的影响[J]. 材料导报, 2020, 34(8): 8194-8199.
[2] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[3] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[4] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[5] 张贤琳, 王晓琳, 马建威, 李宝娥, 李海鹏, 刘世敏, 梁春永, 王洪水. 钛表面微弧氧化结构和成分对其润湿性的影响[J]. 材料导报, 2019, 33(24): 4035-4039.
[6] 崔岩, 倪浩晨, 曹雷刚, 杨越, 王一鸣. SiC颗粒整形对高体分铝基复合材料力学性能的影响及有限元模拟[J]. 材料导报, 2019, 33(24): 4126-4130.
[7] 闫民杰, 刘梁森, 陈莉, 刘丽研, 荆妙蕾, 徐志伟, 姜亚明, 傅宏俊. 基于碳纳米管界面改性的碳纤维复合材料抗γ辐射性能研究[J]. 材料导报, 2019, 33(24): 4174-4180.
[8] 乔巍, 姚卫星, 马铭泽. 复合材料残余应力和固化变形数值模拟及本构模型评价[J]. 材料导报, 2019, 33(24): 4193-4198.
[9] 李大玉, 张文韬, 张超. 不同种类金属掺杂改性TiO2材料光催化性能的研究进展[J]. 材料导报, 2019, 33(23): 3900-3907.
[10] 贾颖. Li在石墨烯表面吸附与迁移的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 43-47.
[11] 李贺, 陈开斌, 罗英涛, 孙丽贞, 杜娟. 纳米碳基复合吸波材料吸波机理及性能研究进展[J]. 材料导报, 2019, 33(Z2): 73-77.
[12] 王晓燕, 王继梅, 侯国艳. 富锌载银可溶玻璃抗菌材料的性能[J]. 材料导报, 2019, 33(Z2): 92-96.
[13] 李林杰, 马子广. 碳纤维蜂窝夹层结构防雷击铜网胶膜共固化设计及雷击与承载能力试验[J]. 材料导报, 2019, 33(Z2): 121-124.
[14] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[15] 刘伟东, 薄旭盛, 何成. 基于轻量化材料防撞梁的低速碰撞性能研究[J]. 材料导报, 2019, 33(Z2): 468-472.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed