Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 26-28    
  无机非金属及其复合材料 |
氢气退火对ITO纳米颗粒能带结构的影响
郭德双1,2, 王登魁1, 王新伟1,2, 孟兵恒1, 方铉1, 房丹1, 魏志鹏1
1 长春理工大学高功率半导体激光国家重点实验室,长春 130022;
2 长春理工大学材料科学与工程学院,长春 130022
Effect of Hydrogen Annealing on the Band Structure of ITO Nanoparticles
GUO Deshuang1,2, WANG Dengkui1, WANG Xinwei1,2, MENG Bingheng1, FANG Xuan1, FANG Dan1, WEI Zhipeng1
1 State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, Changchun 130022, China;
2 School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
下载:  全 文 ( PDF ) ( 3494KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用共沉淀法合成了高质量的ITO纳米颗粒,研究了H2退火对ITO结构及能带的影响。通过扫描电子显微镜对ITO颗粒的形貌进行分析,发现其颗粒尺寸均匀;采用傅里叶变换红外光谱分析退火前后ITO中化学键的类型,发现退火之后In-O键的振动峰减弱,这是ITO颗粒表面氧溢出并形成In-Sn合金所致;同时X射线衍射曲线在退火前后并未发生变化,表明ITO纳米颗粒主体的晶体结构并没有发生改变;通过H2气氛下退火后样品的吸收光谱可以看出,随着退火温度的升高,ITO的带隙逐渐增大,这是由表面的In-Sn合金所引起的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭德双
王登魁
王新伟
孟兵恒
方铉
房丹
魏志鹏
关键词:  纳米材料  氧化铟锡(ITO)  共沉淀法  热退火  光学带隙    
Abstract: In this paper, high quality ITO nanoparticles were synthesized by coprecipitation method. The effect of H2 annealing on ITO structure and energy band was studied. The morphology of ITO particles was analyzed by scanning electron microscopy and the particle size was uniform. The type of chemical bond in ITO before and after annealing was analyzed by Fourier transform infrared spectroscopy. It was found that the vibration peak of In-O bond was weakened after annealing, and the surface of ITO particles overflowed with oxygen and formed into In-Sn alloy. At the same time, the X-ray diffraction curve did not change before and after annealing, indicating that the crystal structure of the main body of ITO nanoparticles has not changed. It can be seen from the absorption spectrum of the sample after annealing in the H2 atmosphere that as the annealing temperature increases, the band gap of ITO gradually increases, which is caused by the surface In-Sn alloy.
Key words:  nanomaterials    indium tin oxide (ITO)    coprecipitation method    thermal annealing    optical band gap
                    发布日期:  2020-07-01
ZTFLH:  O472+.3  
基金资助: 国家自然科学基金(61574022;61674021;11674038;61704011);长春理工大学校青年基金(XQNJJ-2018-18)
作者简介:  郭德双,长春理工大学硕士研究生,主要从事半导体纳米材料方面的研究;王新伟,长春理工大学副教授,研究领域为半导体纳米材料的合成及光、电性质和碳基纳米材料的制备与改性。
引用本文:    
郭德双, 王登魁, 王新伟, 孟兵恒, 方铉, 房丹, 魏志鹏. 氢气退火对ITO纳米颗粒能带结构的影响[J]. 材料导报, 2020, 34(Z1): 26-28.
GUO Deshuang, WANG Dengkui, WANG Xinwei, MENG Bingheng, FANG Xuan, FANG Dan, WEI Zhipeng. Effect of Hydrogen Annealing on the Band Structure of ITO Nanoparticles. Materials Reports, 2020, 34(Z1): 26-28.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/26
1 Dang M T, Wantz G, Hirsch L, et al. Thin Solid Films,2017,638,236.
2 Souada M, Louage C, Doisy J Y, et al. Ultrasonics Sonochemistry,2018,40,929.
3 Kee Y Y, Tan S S, Yong T K, et al. Nanotechnology,2011,23(2),025706.
4 Gwamuri J, Vora A, Mayandi J, et al. Solar Energy Materials and Solar Cells,2016,149,250.
5 Laurenti M, Bianco S, Castellino M, et al. ACS Applied Materials & Interfaces,2016,8(12),8032.
6 Kang M, Losego M, Sachet E, et al. ACS Photonics,2016,3(10),1993.
7 Zandi O, Agrawal A, Shearer A B, et al. Nature Materials,2018,17(8),710.
8 Agrawal A, Johns R W, Milliron D J. Annual Review of Materials Research,2017,47,1.
9 Yang H, Tang A, Zhang X, et al. Scripta Materialia,2004,50(4),413.
10 Goh K W, Johan M R, Wong Y H. Micro & Nano Letters,2018,13(2),270.
11 Li Y, Wang J, Feng B, et al. Journal of Alloys and Compounds,2015,634,37.
12 Kanehara M, Koike H, Yoshinaga T, et al. Journal of the American Chemical Society,2009,131(49),17736.
13 Wei W, Hong R, Jing M, et al. Nanotechnology,2017,29(1),015705.
14 肖和平,郭冠军,马祥柱,等.激光与光电子学进展,2017,54(1),311.
15 江锡顺,东升,宋学萍,等.人工晶体学报,2011,40(6),1536.
16 孟庆哲,方允樟,马云,等.材料科学,2013,3(1),45.
17 Sarhaddi R, Shahtahmasebi N, Rokn-Abadi M R, et al. Physica E: Low-dimensional Systems and Nanostructures,2010,43(1),452.
18 Wang Y, Capretti A, Dal Negro L. Optical Materials Express,2015,5(11),2415.
19 Yadav B C, Agrahari K, Singh S, et al. Journal of Materials Science: Materials in Electronics,2016,27(5),4172.
20 Körösi L, Papp S, Dékány I. Thin Solid Films,2011,519(10),3113.
21 胡建民,王蕊,王春婷,等.大学物理,2015,34(3),1.
22 Senthilkumar V, Senthil K, Vickraman P. Materials Research Bulletin,2012,47(4),1051.
23 Ma J, Zhang D, Zhao J, et al. Applied Surface Science,1999,151(3-4),239.
24 Marikkannan M, Subramanian M, Mayandi J, et al. AIP Advances,2015,5(1),017128.
[1] 张超, 张利, 刘兴华, 陈琳, 杨永珍, 于世平. 碳纳米材料的抗菌性及在生物医学中的应用研究进展[J]. 材料导报, 2020, 34(Z1): 53-57.
[2] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[3] 赖宇明, 高雅, 要秀全. 纳米尺度自组装相互作用力研究进展[J]. 材料导报, 2020, 34(7): 7091-7098.
[4] 袁竞优, 贾庆明, 陕绍云. 碳羟基磷灰石纳米材料的研究进展[J]. 材料导报, 2020, 34(13): 13084-13090.
[5] 闫秋会, 夏卫东, 罗杰任, 霍鑫. SiO2气凝胶的常压干燥制备与性能表征[J]. 材料导报, 2020, 34(12): 12173-12177.
[6] 陈有为, 王夏天, 李琦, 张威波, 史丹, 黄姣, 陈丹超, 周生虎. “核-壳-冠”聚合物胶束模板合成无机中空纳米材料的研究进展[J]. 材料导报, 2020, 34(11): 11090-11098.
[7] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[8] 张燕. 一步法制备无表面修饰剂花状金纳米颗粒及其表面增强拉曼散射性能研究[J]. 材料导报, 2019, 33(z1): 314-317.
[9] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[10] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[11] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[12] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
[13] 阮子林, 郝振亮, 张辉, 卢建臣, 蔡金明. Cu2-xS(0≤x≤1)化合物:制备技术、物理特性及应用[J]. 材料导报, 2019, 33(7): 1141-1155.
[14] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
[15] 鲍艳, 刘盼, 郭佳佳. 利用双子表面活性剂辅助制备纳米材料和介孔材料的研究进展[J]. 材料导报, 2019, 33(21): 3678-3685.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed