Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 185-188    
  无机非金属及其复合材料 |
渗透结晶型防护剂对混凝土防水抗蚀性能的影响
王梦宇, 李崇智, 牛振山
北京建筑大学土木与交通工程学院,北京 100044
Effects of Osmotic Crystalline Surface Protectant on the Waterproofand Anti-corrosion Properties of Concrete
WANG Mengyu, LI Chongzhi, NIU Zhenshan
School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044
下载:  全 文 ( PDF ) ( 3461KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 渗透结晶防水材料对混凝土制品表面具有很好的防护作用,实验验证了一种可以在混凝土的孔隙或裂缝里生成疏水性络合物的渗透结晶型表面防护剂(简称OCSP)对混凝土面层防水抗腐蚀性能的影响。涂刷量为225 g/m2的试块的吸水率低于0.4%,比未处理试块的吸水率降低约75%,OCSP具有密实填充和抗水渗透功能;酸、碱、盐等强电解质溶液长期浸泡降低砂浆层的抗渗透防水性,强酸对砂浆表面具有明显破坏侵蚀作用,其质量降低,而在碱和盐溶液环境中砂浆表面密实性和质量增加,涂刷OCSP砂浆层具有明显的延迟化学侵蚀的作用;涂刷200~300 g/m2的OCSP表面护理剂后混凝土28 d的碳化深度接近于零,可以防止普通环境下混凝土构件钢筋保护层的中性化问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王梦宇
李崇智
牛振山
关键词:  渗透结晶型表面防护剂  疏水性  抗腐蚀性  碳化深度    
Abstract: The osmotic crystallization waterproof material has a good protective effect on the surface of concrete products. Experiments verified an Osmotic crystalline surface protectant (OCSP) could form a hydrophobic complex in the pores or cracks of concrete and affect the waterproof and corrosion resistance of the surface layer of concrete. The water absorption of the test pieces with a coating amount of 225 g/m2 is less than 0.4%, which is about 75% lower than that of the untreated test pieces, so the OCSP has a function of dense filling and water penetration resis-tance. The resistance to penetration and water repellency of the mortar layer was reduced as long-term immersion in strong electrolyte solutions such as acid, alkali and salt, the strong acid has obvious damage and erosion on the surface of mortar. However, in the environment of alkali and salt solution, the surface density and weight of the mortar would be increased, the mortar layer with OCSP has obvious delayed chemical attack and the carbonization depth was close to zero for 28 days as concrete coated with 200—300 g/m2 which could well prevent the neutralization of reinforcement protection layer of concrete members in ordinary environment.
Key words:  osmotic crystalline surface protectant    hydrophobicity    corrosion resistance    carbonation depth
                    发布日期:  2020-07-01
ZTFLH:  TU528  
基金资助: 北京建筑大学未来城市设计高精尖创新中心项目(UDC2016030300)
作者简介:  王梦宇,北京建筑大学2017级在读硕士研究生;李崇智,北京建筑大学教授,2004年清华大学土木工程专业博士毕业,主要从事混凝土外加剂研制与应用研究。
引用本文:    
王梦宇, 李崇智, 牛振山. 渗透结晶型防护剂对混凝土防水抗蚀性能的影响[J]. 材料导报, 2020, 34(Z1): 185-188.
WANG Mengyu, LI Chongzhi, NIU Zhenshan. Effects of Osmotic Crystalline Surface Protectant on the Waterproofand Anti-corrosion Properties of Concrete. Materials Reports, 2020, 34(Z1): 185-188.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/185
1 章超.钢筋混凝土防腐蚀外加剂研究与应用.硕士学位论文,北京建筑大学,2019.
2 罗梅芳,宁忠东.中国西部科技,2011(3),57.
3 胡骏,洪晓苗,邵林.中国建筑防水,2013(16),7.
4 蔡世达,吴立彬,郭云波.水利技术监督,2016,24(6),57.
5 赵珏,王子明.混凝土与水泥制品,2015(6).6.
6 邓德安,阿那,方楚燕.新型建筑材料,2014(4),64.
7 Nasiru Zakari Muhammad, Ali Keyvanfar, Muhd Zaimi Abd, et al. Construction and Building Materials,2015,101,80.
8 Masayuki Tsukagoshi, Hiroyuki Miyaucm, Kyoi Tmaka, et al. Construction and Building Materials,2012,36,895.
[1] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[2] 陈灵芝, 周张健, CarstenSchroer. 铅冷能源系统中液态金属与铁基合金相容性的研究进展[J]. 材料导报, 2020, 34(5): 5096-5101.
[3] 闫秋会, 夏卫东, 罗杰任, 霍鑫. SiO2气凝胶的常压干燥制备与性能表征[J]. 材料导报, 2020, 34(12): 12173-12177.
[4] 温变英, 段磊. PEI/Ni梯度电磁屏蔽薄膜材料耐腐蚀性研究[J]. 材料导报, 2019, 33(6): 1065-1069.
[5] 周杰, 李克, 王彪, 艾凡荣. 添加Nd对Mg-Zn-Ca合金非晶形成能力和耐蚀性的影响[J]. 材料导报, 2019, 33(1): 73-77.
[6] 代晓军, 杨西荣, 王昌, 徐鹏, 赵曦, 于振涛. 生物医用可降解锌基合金的研究进展[J]. 材料导报, 2018, 32(21): 3754-3759.
[7] 高硕洪, 刘敏, 张小锋, 邓春明. 新型陶瓷基复合超疏水涂层的制备及其性能[J]. 材料导报, 2018, 32(20): 3510-3516.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed