Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 202-205    
  无机非金属及其复合材料 |
高温可重复使用二氧化硅气凝胶复合材料性能研究
郭建业, 赵英民, 张丽娟, 苏力军, 李文静, 杨洁颖
航天特种材料及工艺技术研究所,北京 100074
Study on Properties of High-temperature Reusable Silica Aerogel Composites
GUO Jianye, ZHAO Yingmin, ZHANG Lijuan, SU Lijun, LI Wenjing, YANG Jieying
Research Institute of Aerospace Special Materials and Processing Technology, Beijing 100074
下载:  全 文 ( PDF ) ( 2863KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用扫描电镜、比表面积及孔隙率测试仪、红外光谱仪、XRD等测试手段对不同温度热处理后的气凝胶复合材料进行测试分析。研究结果表明,经1 100 ℃以下热处理,气凝胶复合材料密度、线收缩率、导热系数、压缩强度和模量均有所增大,但变化不明显,说明气凝胶复合材料在1 100 ℃下基本可保持结构与性能稳定。当热处理温度为1 200 ℃时,气凝胶复合材料结构、性能变化明显,微观上,气凝胶孔结构坍塌严重,密度骤增;宏观上,气凝胶复合材料变硬、收缩严重;性能上,复合材料导热系数明显增大,隔热性能下降,压缩强度和压缩模量明显增大,气凝胶韧性明显降低。这表明经1 200 ℃热处理后,气凝胶结构破坏严重,性能下降明显,基本不具备继续使用的特征。通过研究不同温度热处理对二氧化硅气凝胶复合材料性能的影响规律,为可重复使用耐高温二氧化硅气凝胶复合材料的研究指明了道路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭建业
赵英民
张丽娟
苏力军
李文静
杨洁颖
关键词:  气凝胶  热处理  隔热  重复使用  二氧化硅    
Abstract: The aerogel composites after heat treatment at different temperatures were tested and analyzed by means of scanning electron microscope, specific surface area and porosity tester, infrared spectrometer and XRD. The results showed that the density, linear shrinkage, thermal conductivity, compression strength and compression modulus of the aerogel composites increased after heat treatment below 1 100 ℃, but the change was not obvious, indicating that the aerogel composites could maintain stable structure and properties at 1 100 ℃. When the heat treatment temperature was 1 200 ℃, the structure and properties of the aerogel composites changed obviously. On the microscopic scale, the pore structure of the aerogel collapsed seriously, and the density increased suddenly. On the macro scale, the aerogel composites became hard and shrinked seriously. On the properties, the thermal conductivity of composites increased obviously, the thermal insulation performance decreased, the compression strength and compression modulus increased obviously, and the toughness of the aerogel composites decreased obviously. It showed that after 1 200 ℃ heat treatment, the aerogel structure was seriously damaged, and its performance decreased obviously. In this work, the effect of heat treatment on the properties of silica aerogel composites was studied, the road of the research for reusable high-temperature silica aerogel composites was explored.
Key words:  aerogel    heat treatment    heat insulation    reusable    silica
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TB33  
作者简介:  郭建业,航天特种材料及工艺技术研究所,工程师。2016年4月毕业于中国航天科工三院,获得硕士学位。同年加入航天特种材料及工艺技术研究所工作至今,主要从事热防护材料的研究工作。赵英民,航天特种材料及工艺技术研究所,研究员。1993年7月毕业于吉林大学,物理化学专业硕士学位,主要从事非金属功能材料的研究工作。tzcl200216@163.com
引用本文:    
郭建业, 赵英民, 张丽娟, 苏力军, 李文静, 杨洁颖. 高温可重复使用二氧化硅气凝胶复合材料性能研究[J]. 材料导报, 2019, 33(z1): 202-205.
GUO Jianye, ZHAO Yingmin, ZHANG Lijuan, SU Lijun, LI Wenjing, YANG Jieying. Study on Properties of High-temperature Reusable Silica Aerogel Composites. Materials Reports, 2019, 33(z1): 202-205.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/202
1 乐弦, 章婷, 贾欢欢,等.工程研究-跨学科视野中的工程,2017,9(6),558.
2 Fricke J, Emmerling A. Spectroscopy and Application of Sol-Gel Glasses,1992,77(4),37.
3 孙达, 周长灵, 陈恒, 等. 现代技术陶瓷,2015,150(4),24.
4 林高用, 张栋, 卢斌.中南大学学报,2006,37(6),1118.
5 高庆福,张长瑞,冯坚.材料科学与工程学报,2009,27(2),302.
6 Wang L J, Zhao S Y, Yang M. Materials Chemistry & Physics,2009,113(1),485.
7 Rao A V, Bhagat S D, Hirashima H, et al. Journal of Colloid and Interface Science,2006,300(1),279.
8 Kim C Y,Lee J K,Kim B I.Colloids and Surfaces A: Physicochemical and Engineering Aspects,2008,313-314,179.
9 邵再东, 张颖, 程璇. 化学进展,2014,26(8),1329.
10 Siligardi C, Miselli P, Francia E, et al. Energy and Buildings,2017,138,80.
11 Akimov Y K. Instruments and Experimental Techniques,2003,46(3),287.
12 Jones S M. Journal of Sol-Gel Science and Technology,2006,40,351.
13 王振国. 可重复使用运载器研究进展, 国防工业出版社,2004.
14 Koelle D E. Acta Astronautica,1989,19(2),191.
15 Deneu F, Malassigne M, Le-couls O, et al. Acta Asstronautica,2005,4(56),729.
16 Space X. Falcon 9 launch vehicle payload user’s guide, Space Exploration Technologies Corporation,2009.
17 汪小卫, 张普卓, 吴胜宝, 等.航天返回与遥感,2016,37(3),19.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[3] 王雪, 朱昆萌, 彭长鑫, 钟铠, 崔升. 生物可降解多糖气凝胶材料的研究进展[J]. 材料导报, 2019, 33(z1): 476-480.
[4] 苏力军, 张丽娟, 宋寒, 郭慧, 郭建业, 李文静, 杨洁颖, 裴雨辰. 非压力浸渍成型技术制备夹层结构气凝胶外防热材料[J]. 材料导报, 2019, 33(z1): 206-210.
[5] 陈琛辉, 蒋璐瑶, 刘成龙, 黄伟九, 郭勇义, 胥桥梁. 搅拌摩擦加工细晶TA2工业纯钛晶粒长大规律[J]. 材料导报, 2019, 33(8): 1367-1370.
[6] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[7] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[8] 张煜, 聂登攀, 曹建新. 二氧化硅杂质对重晶石碳热还原反应的影响及其相变行为分析[J]. 材料导报, 2019, 33(6): 936-940.
[9] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[10] 蒋波, 刘雅政, 周乐育, 张朝磊, 陈列, 王国存. 重型钎具用钢组织性能控制的研究现状[J]. 材料导报, 2019, 33(5): 854-861.
[11] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[12] 何海峰,寇新秀,吕海亮,白瑞钦,刘欣,靳涛. 聚酰胺胺改性纳米二氧化硅的研究进展[J]. 材料导报, 2019, 33(17): 2882-2889.
[13] 熊斯, 唐鑫, 王春霞, 胡清华. 焊后热处理对Al-Mg-Zn(-Sc-Zr)合金焊丝焊接7075铝合金焊接接头组织和性能的影响[J]. 材料导报, 2019, 33(16): 2720-2724.
[14] 张文华, 吕毓静, 刘鹏宇. EPS混凝土研究进展综述[J]. 材料导报, 2019, 33(13): 2214-2228.
[15] 魏明海, 孙丽, 张春巍, 齐佩佩, 朱洁. 纳米氧化锆和氧化硅混合体系剪切增稠液的流变性能[J]. 材料导报, 2019, 33(12): 1969-1974.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed