Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 122-125    
  无机非金属及其复合材料 |
Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能
春风1,2, 特古斯1, Tsogbadrakh N2, Sangaa D3
1 内蒙古师范大学内蒙古自治区功能材料物理与化学重点实验室,呼和浩特 010022
2 蒙古国国立大学物理系,乌兰巴托 14201,蒙古国
3 蒙古科学院物理与技术研究所,乌兰巴托 13330,蒙古国
Structure, Magnetism and Heating Properties in AC Magnetic Field of Mg1-xCaxFe2O4 Ferrites
Chunfeng B1,2, Tegus O1, Tsogbadrakh N2 , Sangaa D3
1 Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Inner Mongolia Normal University, Hohhot 010022
2 Department of Physics, National University of Mongolia, Ulaanbaatar 14201, Mongolia
3 Institute of Physics and Technology, Mongolian Academy of Science, Ulaanbaatar 13330, Mongolia
下载:  全 文 ( PDF ) ( 2999KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用固相反应法制备了Mg1-xCaxFe2O4 ( x = 0,0.1,0.2,0.3,0.4)系多晶铁氧体,利用X射线衍射(XRD)法测定样品的物相结构,采用扫描电镜(SEM)观察样品形貌和分析其化学成分,用磁性测量仪对样品的磁性能进行了表征,并测定了交变磁场(频率为25 kHz)中样品的发热性能。结果表明,Ca含量 x = 0~0.3时,样品均为单相立方尖晶石结构,当Ca含量x = 0.4 时样品呈现四方相;晶格常数和晶粒尺寸均随x值增加而逐渐增大,而饱和磁化强度(Ms)先增大后减小,矫顽力增大。当x = 0.1时样品的Ms达到最大值16.37 A·m2·kg-1,发热性能最佳。适量的Ca取代Mg可以提高Mg1-xCaxFe2O4铁氧体的磁性能及发热性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
春风
特古斯
Tsogbadrakh N
Sangaa D
关键词:  铁氧体  磁性  磁致发热性能  磁滞损耗    
Abstract: A series of Mg1-xCaxFe2O4 ferrites was prepared by a solid-state reaction method. The crystal structure, the morphology and chemical composition, the magnetic properties of the ferrites were investigated by using XRD, SEM and VSM, respectively. The heating performance was measured in an alternating magnetic field (25 kHz). The results show that the ferrites form the single-phase cubic spinel structure in the Ca content x between 0 and 0.3, while a tetragonal phase forms at x=0.4. The lattice constants, the coercivity and the grain sizes increase with x, while the saturation magnetization changes nonlinearly. The saturation magnetization (Ms) reaches a maximum of 16.37 A·m2·kg-1 and the heating property is maximum at x = 0.1. It turns out that appropriate amounts of Ca substitution for Mg could improve the magnetic and heating performance of the ferrites, which have potential application and promising approaches for tumor therapy.
Key words:  ferrites    magnetic property    magnetic heating property    hysteresis loss
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  O482.54  
基金资助: 蒙古国国立大学项目 (P2018-3612)
作者简介:  春风,2006年4月毕业于日本冈山大学,获得理学硕士学位。2015年10月至今在蒙古国国立大学读博士学位,主要从事磁性材料领域的磁致发热性能研究。特古斯,博士,内蒙古师范大学物理学教授,2003年获荷兰阿姆斯特丹大学理学博士,从事磁性材料研究。Namsrai Tsogbadrakh 从英国索尔福德大学材料研究所毕业,获得博士学位。现在,于蒙古国蒙古国立大学物理学院工作,任教授。其致力于研究材料特性实验,晶体动力学和电子能带结构预测,高能先进磁性材料的磁性能和磁晶各向异性,例如Li离子电池的应用,自旋电子学和产热能力。另外,他致力于电子能带结构理论的发展,例如DFT,绿色函数法和GW-approximation, CPA and DMFT。tegusph@imnu.edu.cn
引用本文:    
春风, 特古斯, Tsogbadrakh N, Sangaa D. Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能[J]. 材料导报, 2019, 33(z1): 122-125.
Chunfeng B, Tegus O, Tsogbadrakh N, Sangaa D. Structure, Magnetism and Heating Properties in AC Magnetic Field of Mg1-xCaxFe2O4 Ferrites. Materials Reports, 2019, 33(z1): 122-125.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/122
1 Sangaa D, Khongorzul B, Uyanga, et al. Solid State Phenomena,2018,271,51.
2 Hirazawa H, Ito Y, Sangaa D, et al. AIP Conference Proceedings,2016,1763,020009.
3 Nomura S, Mukasa S, Miyoshi T, et al. Journal of Materials Science,2006,41(10),2989.
4 Uyanga E, Sangaa D, Hirazawa H, et al. Journal of Molecular Structure,2018,1160,447.
5 Ma M, Wu Y, Zhou J, et al. Journal of Magnetism and Magnetic Mate-rials,2004,268(1-2),33.
6 Nomura S, Mukasa S, Yamasaki H, et al. Heat Transfer Engineering,2007,28(12),1017.
7 杨宇翔, 刘意成, 赵敏, 等. 高等学校化学学报,2007,38(10),1709.
8 Aono H, Hirazawa H, Ochi T, et al. Chemistry Letters,2005,34(4),482.
9 Hirazawa H, Kusamoto S, Aono H, et al. Journal of Alloys & Compounds,2008,461(1),467.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[3] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[4] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[5] 韩贵华, 张宝林, 苏礼超, 黄银平, 范子梁, 赵应征. 二肉豆蔻酰磷脂酰胆碱修饰的氧化铁纳米粒子在PC-12细胞内的分布[J]. 材料导报, 2019, 33(6): 1047-1051.
[6] 阿比迪古丽·萨拉木, 吾尔尼沙·依明尼亚孜, 买买提热夏提·买买提, 吴钊峰. 掺杂对BiFeO3薄膜电、磁特性影响综述[J]. 材料导报, 2019, 33(5): 791-796.
[7] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[8] 郭景锋, 曹铁山, 程从前, 王富岗, 孟宪明, 赵杰. 氧化对Cr25Ni35Nb与Cr35Ni45Nb合金组织和磁性的影响[J]. 材料导报, 2019, 33(4): 650-653.
[9] 马应霞, 金朋生, 邵文杰, 寇亚兰, 喇培清. 表面接枝端羟基聚酰胺-胺的磁性氧化石墨烯对Hg(Ⅱ)的吸附性能[J]. 材料导报, 2019, 33(2): 234-239.
[10] 肖治国,成岳,唐伟博,余宏伟. 核壳磁性纳米粒子在环境治理中的应用进展[J]. 材料导报, 2019, 33(13): 2174-2183.
[11] 谢丽娜, 罗聪, 吴嘉敏, 王昌绚, 邬均. 利用均匀磁场提高聚乙烯亚胺-Fe3O4纳米颗粒复合物的磁转染效果[J]. 《材料导报》期刊社, 2018, 32(8): 1247-1251.
[12] 刘涛, 马垒, 赵世谦, 马冬冬, 李林, 成钢. 沉积厚度对L10-FePd颗粒膜结构和磁性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 525-527.
[13] 李光大, 张楠, 张开丽, 赵三团, 麻开旺, 许贺龙, 赵威, 谢蟪旭. 含钙铁氧体磁性生物活性玻璃陶瓷热种子的制备与表征[J]. 材料导报, 2018, 32(24): 4211-4216.
[14] 李旭,汪子孺,杨莉,张振东,张友婷,杜毅帆. 稻糠基磁性高吸油材料的仿生制备及性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 219-222.
[15] 崔巍, 王珂, 姜民政, 马春阳, 冯子明, 冷建成. 管道焊缝裂纹扩展的流固磁耦合表征[J]. 材料导报, 2018, 32(16): 2852-2858.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed