Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 108-111    
  无机非金属及其复合材料 |
Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响
古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞
新疆大学物理科学与技术学院,乌鲁木齐830046
Effect of Ni Doping on the Crystal Structure and Magnetic Properties of BiFeO3 Films
ABLAT Gulnigar, MAIMAITI Maihemuti, SALAMU Abidiguli, MAMAT Mamatrishat, WU Zhaofeng, SUN Yanfei
School of Physics and Technology, Xinjiang University, Urumqi 830046
下载:  全 文 ( PDF ) ( 2196KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用溶胶-凝胶法在Si/SiO2衬底上制备BiFeO3(BiFe1-xNixO3,x=0, 0.05, 0.10, 0.15)薄膜。分别研究了Ni对BiFe1-xNixO3晶体结构、表面形貌、光学性能以及磁性的影响。X射线衍射光谱显示,Ni掺杂改变了BiFe1-xNixO3体系的晶体结构,由菱形相转变为正方相。扫描电子显微镜(SEM)显示,Ni掺杂可以提高BiFe1-xNixO3薄膜的结晶度。拉曼光谱表明纯BFO具有较强的振动峰,但随着Ni掺杂量的增加,拉曼峰发生了红移,这表明Ni掺杂缩短了BiFeO3薄膜中Bi-O原子间的距离。与BiFeO3薄膜相比,BiFe1-xNixO3(x=0.05, 0.1, 0.15)薄膜的饱和磁化强度(Ms)明显增强,说明Ni含量的增加导致了更多的结构畸变,从而抑制了BiFe1-xNixO3薄膜的自旋结构。研究结果可为信息存储提供潜在的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
古丽妮尕尔·阿卜来提
麦合木提·麦麦提
阿比迪古丽·萨拉木
买买提热夏提·买买提
吴赵锋
孙言飞
关键词:  铁酸铋  镍掺杂  薄膜  磁性能    
Abstract: The multiferroic BiFeO3 (BiFe1-xNixO3, x=0, 0.05, 0.10, and 0.15) films have been prepared on silicon substrates by the sol-gel method. The effects of Ni on BiFeO3 crystal structure, surface morphology, optical properties and magnetic properties were investigated. X-ray diffraction spectra indicated that Ni substitution changed the crystal structure of the BiFe1-xNixO3 system from rhombohedral to tetragonal phase. Scanning electron microscopy (SEM) showed that Ni doping can improve the crystallinity of BiFe1-xNixO3 films. Raman spectra revealed that pure BFO have strong vibration peaks. However, with the increase of Ni doping, the Raman peaks was redshifted. The result indicated that Ni doping reduced the distance between Bi-O atoms in BiFeO3 thin films. Compared with BiFeO3 film, the saturation magnetization (Ms) of BiFe1-x-NixO3 (x=0.05, 0.1 and 0.15) films was significantly enhanced, which indicated that the increase of Ni content inducing more structure distortion and thus suppressing cycloid spin structure in BiFe1-xNixO3 films. Our result may provide potential applications in information storage.
Key words:  BiFeO3    Ni-doping    thin films    magnetic property
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  O641  
基金资助: 国家自然科学基金(61366001;61604126);新疆自治区研究生创新项目(XJGRI 2017031)
作者简介:  古丽妮尕尔·阿卜来提,2016年6月毕业于新疆大学,获得理学学士学位。现为新疆大学读硕士研究生,在买买提热夏提·买买提副教授的指导下进行研究。目前主要研究方向为材料物理。买买提热夏提·买买提,新疆大学物理科学与技术学院副教授、硕士研究生导师。1998年7月、2002年7月先后本科、硕士毕业于新疆大学物理系,2012年3月在日本东京工业大学应用物理与微电子学专业取得博士学位,回国后至今一直工作在新疆大学,自2017年9月至2018年7月访问浙江大学物理系。主要从事材料物理和凝聚态物理研究工作。近年来,在微电子学与材料物理领域发表论文20余篇,包括Microelectronics and Reliability、Vacuum、Semiconductor Science and Technology、Superlattices and Microstructures、Solid State Communications、Applied Surface Science、Materials Letters 等。mmrishat@163.com
引用本文:    
古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
ABLAT Gulnigar, MAIMAITI Maihemuti, SALAMU Abidiguli, MAMAT Mamatrishat, WU Zhaofeng, SUN Yanfei. Effect of Ni Doping on the Crystal Structure and Magnetic Properties of BiFeO3 Films. Materials Reports, 2019, 33(z1): 108-111.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/108
1 Kleemann W, Binek C. Springer Berlin Heidelberg, 2013, 37(44), 759.
2 Singh M K, Jang H M, Ryu S, et al. Applied Physics Letters, 2006, 88(4), 6694.
3 Wang J, Neaton J B, Zheng H, et al. Science, 2003, 299(5613), 1719.
4 Muneeswaran M, Dhanalakshmi R, Giridharan N V. Journal of Materials Science Materials in Electronics, 2015, 26(6), 3827.
5 Zhong Z, Ishiwara H. Applied Physics Letters, 2009, 95(11), 849.
6 Michel C, Moreau J M, Achenbach G D, et al. Solid State Communications, 1969, 7(9), 701.
7 Marzouki A, Harzali H, Loyau V, et al. Acta Materialia, 2018, 316(3), 321.
8 Wang T, Ma Q, Song S H. Journal of Magnetism & Magnetic Materials, 2018, 375(3), 380.
9 Rohit M, Surbhi G, Shojan P, et al. Journal of Materials Science, 2018, 53(6), 4274.
10 Kim J K, Kim S S, Kim W J, et al. Journal of Applied Physics, 2007, 101(1), 803.
11 Lee S U, Sang S K, Park M H, et al. Applied Surface Science, 2007, 254(5), 1493.
12 Arora M, Kumar M. Ceramics International, 2015, 41(4), 5705.
13 Sun W, Li J F, Yu Q. Journal of Materials Chemistry C, 2015, 3(9), 2115.
14 Dong G H, Guo Q. Journal of Materials Science & Technology, 2014, 30(4), 365.
15 Riaz S, Shah S M H, Akbar A. Journal of Sol-Gel Science and Technology, 2015, 74(2), 329.
16 Lin P, Deng H, Tian J, et al. Applied Surface Science, 2013, 268(3), 146.
17 Singh S K, Sato K, Maruyama K, et al. Japanese Journal of Applied Physics Pt Letters & Express Letters, 2006, 45(45), 1087.
18 Dong G, Tan G, Liu W, et al. Ceramics International, 2014, 40(1), 1919.
19 Xue X, Tan G Q, Ren H J, et al. Key Engineering Materials, 2012, 512, 1249.
20 Huang J Z, Shen Y, Li M, et al. Journal of Applied Physics, 2011, 110(9), 123.
21 Liu J, Deng H, Zhai X, et al. Materials Letters, 2014, 133(10), 49.
22 关晓英,乔忠旺,马志深,等. 新疆师范大学学报(自然科学版), 2015, 34(3), 33.
23 Li J, Liu K, Xu J, et al. Journal of Materials Science Research, 2013, 2(3), 129.
24 Couture P, Williams G V M, Kennedy J, et al. Journal of Alloys & Compounds, 2017, 695, 3061.
25 Irfan S, Rizwan S, Shen Y, et al. Scientific Reports, 2017, 7, 42493.
26 Sharma G N, Dutta S, Pandey A, et al. Materials Research Bulletin, 2017, 95, 223.
27 Tu C S, Chen C S, Chen P Y, et al. Journal of the European Ceramic Society, 2016, 36(5), 1149.
28 Tomczk M, Bretos I, Jiménez R, et al. Journal of Materials Chemistry C, 2017, 5, 12529.
29 Chung C F, Lin J P, Wu J M. Applied Physics Letters, 2006, 88(24), 610.
30 Song G L, Zhang H X, Wang T X, et al. Journal of Magnetism & Magnetic Materials, 2012, 324(13), 2121.
31 Wang Y, Xu G, Yang L, et al. Materials Science-Poland, 2009, 27(1), 219.
32 Campanini M, Erni R, Yang C H, et al. Nano Letters, 2018, 18(2), 717.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 原禧敏, 杨宏伟, 李郁秀, 巢云秀, 李耀, 陈家林, 陈力. 无卤素离子辅助合成纳米银线及其在柔性透明导电薄膜中的应用[J]. 材料导报, 2019, 33(z1): 300-302.
[3] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[4] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[5] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[6] 温变英, 段磊. PEI/Ni梯度电磁屏蔽薄膜材料耐腐蚀性研究[J]. 材料导报, 2019, 33(6): 1065-1069.
[7] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[8] 崔龙辰, 王军军, 黄伟九. 类聚合物碳薄膜的制备及其摩擦学研究进展[J]. 材料导报, 2019, 33(5): 797-804.
[9] 阿比迪古丽·萨拉木, 吾尔尼沙·依明尼亚孜, 买买提热夏提·买买提, 吴钊峰. 掺杂对BiFeO3薄膜电、磁特性影响综述[J]. 材料导报, 2019, 33(5): 791-796.
[10] 周超, 李得天, 周晖, 张凯锋, 曹生珠. MEMS器件真空封装用非蒸散型吸气剂薄膜研究概述[J]. 材料导报, 2019, 33(3): 438-443.
[11] 张化福,沙浩,吴志明,蒋亚东,王操,孙艳,景强. 太赫兹波段二氧化钒薄膜的研究进展[J]. 材料导报, 2019, 33(15): 2513-2523.
[12] 孙科学, 常月欣, 成谢锋. xBiInO3-(1-x)PbTiO3薄膜的横向压电特性[J]. 材料导报, 2019, 33(14): 2299-2304.
[13] 王月敏, 商磊, 闫相桥, 李新刚, 李垚. 基于纳米压痕技术的光子晶体薄膜实验研究与有限元模拟[J]. 材料导报, 2019, 33(14): 2283-2286.
[14] 沈韬,柴鲜花,孙淑红,朱艳. 微波法制备铜锌锡硫的研究进展[J]. 材料导报, 2019, 33(13): 2159-2166.
[15] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed