Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 590-598    
  高分子与聚合物基复合材料 |
弹性体共混改性聚乳酸(PLA)高韧性共混物研究进展
赵西坡, 胡欢, 熊娟, 王鑫, 余晓磊, 彭少贤
湖北工业大学材料与化学工程学院,绿色轻工材料湖北省重点实验室,湖北工业大学绿色轻质材料与加工协同创新中心,武汉 430068
Research Progress of Elastomer Blended Modified Poly (Lactic Acid) (PLA)High Toughness Blends
ZHAO Xipo, HU Huan, XIONG Juan, WANG Xin, YU Xiaolei, PENG Shaoxian
Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068
下载:  全 文 ( PDF ) ( 3216KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚乳酸(PLA)是最有前景的生物基可降解材料之一,其优异的力学性能、良好的可塑性以及生物相容性使其在包装、服装和医药领域有巨大的应用潜力,但PLA固有的脆性和低的冲击韧性限制了它的应用范围。近十几年来,广大学者对聚乳酸的增韧改性进行了大量研究,主要改性方法有复合、共聚、增塑和共混。
复合改性是指向PLA中加入纤维、改性碳纳米管(MWCHNTs)、壳聚糖(Ch)、改性二氧化钛(TiO2)等填料,填料与PLA形成一定的物理交联,具有补强增韧的作用,但填料与基体间的粘附与分散是有待解决的难点。共聚改性是指在PLA链上引入聚乙二醇(PEG)、聚己内酯(PCL)、甲基丙烯酸缩水甘油酯(GMA)、聚蓖麻油(PCO)等柔性分子链, PLA分子链规整度和结晶度下降,韧性改善显著,但高额的成本、严重的污染和复杂的反应流程无法满足实际应用的需求。增塑改性是指在PLA中加入柠檬酸酯、甘油基酯、聚乙二醇、乳酸及乳酸酯等小分子物质,增强PLA分子链的运动能力,断裂伸长率大幅提升,但增塑剂易迁移这一问题仍有待解决。共混改性是将PLA与橡胶粒子或热塑性弹性体(聚氨酯类热塑性弹性体(TPU)、聚烯烃类热塑性弹性体、聚酰胺类热塑性弹性体(TPEA)等)等柔性高分子共混,利用橡胶或弹性体组分在剪切脱粘或发生形变时吸收能量,使PLA的韧性大幅提升,其中,热塑性弹性体具有比橡胶粒子更好的加工性,对PLA的增韧效果也更好,是PLA增韧改性研究的焦点。
本文归纳了石油基热塑性弹性体与生物基/可降解弹性体增韧改性PLA的研究进展,分别从物理共混和反应性共混两方面介绍了增韧改性的原理与方法,分析了共混物相形貌和界面缠结作用力的变化对共混物性能的影响,反应性共混和动态硫化工艺有利于在共混过程中实现原位增容,是制备高韧性PLA/弹性体共混物的有效途径;详细介绍了生物基/生物可降解弹性体增韧PLA制备高韧性全生物基/生物可降解PLA共混物的主要方法和渠道,生物基/可降解弹性体是弹性体增韧PLA的一个新兴方向,具有重要的研究价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵西坡
胡欢
熊娟
王鑫
余晓磊
彭少贤
关键词:  聚乳酸  热塑性弹性体  生物降解  增韧    
Abstract: Poly (lactic acid) (PLA) is one of the most promising bio-based degradable materials. Its excellent mechanical properties, good plasticity and biocompatibility make it have great application potential in packaging, clothing and medicine, but PLA inherent brittleness and low impact toughness limit its range of applications. In the past ten years, many scholars have carried out a lot of research on the toughening modification of PLA. The main modification methods are compounding, copolymerization, plasticizing and blending.
Composite modification refers to the addition of fibers such as fibers, modified carbon nanotubes (MWCHNTs), chitosan (Ch), and modified titanium dioxide (TiO2) to the PLA. The fillers form a physical crosslink with PLA to enhance strength and toughness, but the adhesion and dispersion between the filler and the matrix is a difficult problem to be solved. Copolymerization modification refers to the introduction of flexible molecular chains such as polyethylene glycol (PEG), polycaprolactone (PCL), glycidyl methacrylate (GMA), and polyricin oil (PCO) onto the PLA chain these copolymers reduce the molecular chain regularity and crystallinity of the PLA,the toughness is improved significantly, but the high cost, serious pollution and complexity reaction process cannot meet the needs of the actual application. Plasticization modification refers to the addition of small molecular substances such as citrate, glyceryl ester, polyethylene glycol (PEG), lactic acid and lactate to PLA, which can enhance the mobility of PLA molecular chains, and the elongation at break is greatly increased, but the phenomenon of plasticizer migration is still to be resolved. Blending modification is to blend PLA with flexible polymers such as rubber particles or thermoplastic elastomers. When the flexible polymer component absorbs energy during shear debonding or deformation, the toughness of PLA is greatly improved. Among them, the thermoplastic elastomer has better processability than rubber particles, and the toughening effect on PLA is better, which is the focus of PLA toughening modification research.
In this paper, the research progress of petroleum-based thermoplastic elastomers and bio-based/degradable elastomers toughened modified PLA is summarized. The principles and methods of toughening modification are introduced from the aspects of physical blending and reactive blending. The effects of the morphology of the blend phase and the interfacial entanglement on the properties of the blend were analyzed. Reactive blending and dynamic vulcanization process are beneficial to in-situ compatibilization in the blending process and are an effective way to prepare high toughness PLA/elastomer blends. The main methods and channels for bio-based/biodegradable elastomer toughened PLA to prepare high-toughness bio-based/biodegradable PLA blends are described in detail. Bio-based/degradable elastomers are an emerging direction for elastomer-toughened PLA and have important research value.
Key words:  polylactic acid    thermoplastic elastomer    biodegradation    toughening
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TB324  
基金资助: 国家自然科学基金(51273060);湖北省教育厅重点项目(D20181404;D20111407);绿色轻工材料湖北重点实验室开放基金
通讯作者:  xpzhao123@163.com;psxbb@126.com   
作者简介:  赵西坡,2006年本科毕业于湖北工业大学化工系,获得工学学士学位。2009年获得湖北工业大学硕士学位。2017年在武汉大学材料物理与化学专业取得博士学位。现为湖北工业大学绿色轻工材料湖北省重点实验室副教授,主要从事环境友好高分子材料的高性能化和功能化,主持、参与国家自然科学基金,国家发改委项目,科技部中小企业创新基金、省科技重大攻关项目等12项,发表学术论文40余篇,申请国家发明专利13项。
彭少贤,四川大学硕士研究生,教授,教育部材料类教学指导委员会委员,湖北省新世纪高层次人才工程第二次人选,国家自然基金委评审委员,中国塑料协会加工委员会理事、湖北省复合材料学会第五届理事会常务理事、中国塑料协会改性委员会理事。高分子材料成型学科湖北省重点学科带头人,高分子材料与工程湖北省品牌专业负责人,湖北省级化学教学示范中心主任;《湖北工业大学学报(自然科学版)》、《湖北造纸》编委,湖北省包装技术协会专家与教育委员会首批专家。承担国家级科研项目9项(其中主持国家自然科学基金5项);承担省部级10项,横向科研项目30余项,鉴定成果11项;发表科研论文100多篇。
引用本文:    
赵西坡, 胡欢, 熊娟, 王鑫, 余晓磊, 彭少贤. 弹性体共混改性聚乳酸(PLA)高韧性共混物研究进展[J]. 材料导报, 2019, 33(Z2): 590-598.
ZHAO Xipo, HU Huan, XIONG Juan, WANG Xin, YU Xiaolei, PENG Shaoxian. Research Progress of Elastomer Blended Modified Poly (Lactic Acid) (PLA)High Toughness Blends. Materials Reports, 2019, 33(Z2): 590-598.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/590
1 Ostle C, Thompson R C, Broughton D, et al. Nature Communications,2019,10(1),1622.
2 Sakdaronnarong C, Srimarut N, Lucknakhul N, et al. Biochemical Engineering Journal,2014,85,49.
3 Tajitsu Y, Kawase Y, Katsuya K, et al. IEEE Transactions on Dielectrics and Electrical Insulation,2018,25(3),772.
4 Lima E M B, Lima A M, Minguita A P S, et al. Journal of Applied Polymer Science,2019,136(21),47512.
5 Hussain T, Tausif M, Ashraf M. Journal of Cleaner Production,2015,108,476.
6 Diomede F, Gugliandolo A, Cardelli P, et al. Stem Cell Research & The-rapy,2018,9(1),104.
7 Liu H, Zhang J. Journal of Polymer Science Part B: Polymer Physics,2011,49(15),1051.
8 Xu Z, Yang L, Ni Q, et al. Journal of Engineered Fibers and Fabrics,DOI:10.1177/1558925019834497.
9 张玥珺,余晓磊,赵西坡,等.化工新型材料,2018,46(10),286.
10 杨继年,丁国新,王周锋,等.机械工程材料,2014,37(5),1.
11 Yang Y, Zhang L, Xiong Z, et al. Science China Chemistry,2016,59(11),1355.
12 Phattarateera S, Pattamaprom C. International Journal of Polymer Science, DOI: 10.1155/2019/5679871.
13 李晓川,瞿芊芊,李旭明.纺织学报,2019(3),8.
14 Xu Y, Loi J, Delgado P, et al. Industrial & Engineering Chemistry Research,2015,54(23),6108.
15 Oliaei E, Kaffashi B, Davoodi S. Journal of Applied Polymer Science,2016,133(15),43104.
16 Bernardes G P, da Rosa Luiz N, Santana R M C, et al. Journal of Applied Polymer Science,2019,136,47962.
17 Forghani E, Azizi H, Karabi M, et al. Journal of Cellular Plastics,2018,54(2),235.
18 Wu J H, Chen C W, Kuo M C, et al. Journal of Polymers and the Environment,2018,26(2),626.
19 Bijarimi M, Amirul M, Norazmi M, et al. Materials Research Express,2019,6(5),055044.
20 Krishnan S, Mohanty S, Nayak S K. Journal of Polymer Research,2018,25(1),10.
21 夏学莲,史向阳,赵海鹏,等.化工新型材料,2019,47(4),40.
22 Lebarbé T, Grau E, Alfos C, et al. European Polymer Journal,2015,65,276.
23 Likittanaprasong N, Seadan M, Suttiruengwong S. IOP Conference Series: Materials Science and Engineering,2015,87(1),012069.
24 Han L, Han C, Dong L. Polymer Composites,2013,34(1),122.
25 Han J J, Huang H X. Journal of Applied Polymer Science,2011,120(6),3217.
26 Ho C H, Wang C H, Lin C I, et al. Polymer,2008,49(18),3902.
27 Dai J, Bai H, Liu Z, et al. RSC Advances,2016,6(21),17008.
28 Liu Z, Luo Y, Bai H, et al. ACS Sustainable Chemistry & Engineering,2015,4(1),111.
29 Shi Y, Zhang W, Yang J, et al. RSC Advances,2013,3(48),26271.
30 Xiu H, Huang C, Bai H, et al. Polymer,2014,55(6),1593.
31 曾庆韬,吴保钩,徐鹏武,等.中国科技论文,2018,13(18),4.
32 Liu G C, He Y S, Zeng J B, et al. Polymer Chemistry,2014,5(7),2530.
33 Zhao X P, Xu M, Ding Z, et al. Polymer Science, Series B,2017,59(4),437.
34 He Y S, Zeng J B, Liu G C, et al. RSC Advances,2014,4(25),12857.
35 Dogan S K, Reyes E A, Rastogi S, et al. Journal of Applied Polymer Science,2014,131(10),40251.
36 Zhang X, Koranteng E, Wu Z, et al. Journal of Applied Polymer Science,2016,133(7),42983.
37 Lu X, Wei X, Huang J, et al. Industrial & Engineering Chemistry Research,2014,53(44),17386.
38 Zhang W, Chen L, Zhang Y. Polymer,2009,50(5),1311.
39 Li Y, Shimizu H. Macromolecular Bioscience,2007,7(7),921.
40 Hu X, Li Y, Li M, et al. Industrial & Engineering Chemistry Research,2016,55(34),9195.
41 Yu R, Zhang L, Feng Y, et al. Chinese Journal of Polymer Science,2014,32(8),1099.
42 Lebarbeé T, Grau E, Gadenne B, et al. ACS Sustainable Chemistry & Engineering,2014,3(2),283.
43 Kang H, Qiao B, Wang R, et al. Polymer,2013,54(9),2450.
44 Sun H, Hu J, Bai X, et al. Polymer Testing,2017,64,250.
45 Wang J, Zhang Y, Sun W, et al. Macromolecular Materials and Enginee-ring,2019,304(7),1900107.
46 石楠,原续波,盛京.高分子通报,2006(11),12.
47 Zhang L, Xiong Z, Shams S S, et al. Polymer,2015,64,69.
48 Feng L, Bian X, Li G, et al. Polymer Degradation and Stability,2016,125,148.
49 Chen H, Yu X, Zhou W, et al. Polymer Testing,2018,70,275.
50 Gurunathan T, Mohanty S, Nayak S K. Journal of Materials Science,2014,49(23),8016.
51 孙文源,刘彦驹.弹性体,1991(4),56.
52 Si W J, An X P, Zeng J B, et al. Science China Materials,2017,60(10),1008.
53 Zhao T H, He Y, Li Y D, et al. RSC Advances,2016,6(83),79542.
54 He Y, Zhao T H, Li Y D, et al. Polymer Testing,2017,59,470.
55 Liu G C, He Y S, Zeng J B, et al. Biomacromolecules,2014,15(11),4260.
[1] 张学元, 吕春, 张道明, 王丽, 李扬. 稻草纤维在轻骨料混凝土中的增韧性能及劈裂抗拉强度预测模型[J]. 材料导报, 2020, 34(2): 2034-2038.
[2] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[3] 张忠厚, 张光辉, 陈荣源, 韩琳, 谭延方, 闫春绵. 聚天冬氨酸酯型聚脲增韧结构型环氧树脂及其机理[J]. 材料导报, 2019, 33(6): 1061-1064.
[4] 翟乐, 吉海峰, 姚艳梅, 瞿雄伟. 利用聚丙烯酸正丁酯@聚甲基丙烯酸甲酯核/壳结构聚合物增韧氰酸酯树脂[J]. 材料导报, 2019, 33(4): 705-708.
[5] 马李璇, 李凯, 宁平, 梅毅, 王驰, 孙鑫. 石墨烯在水环境中的转化和降解行为研究进展[J]. 材料导报, 2019, 33(3): 395-401.
[6] 王博成,刘桅,涂征,吴崇刚,石彪,胡涛,龚兴厚. 苯乙烯-丙烯酸甲酯共聚物对聚乳酸/SBS共混物相容性的影响[J]. 材料导报, 2019, 33(22): 3833-3836.
[7] 余鹏, 项佩, 高金玲, 李媛. 基于相形态结构的PLA/PBS共混物微孔发泡行为[J]. 材料导报, 2019, 33(20): 3524-3530.
[8] 潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
[9] 魏波,周金堂,姚正军,钱逸,钱崑. 环氧树脂基体的原位增韧技术研究进展[J]. 材料导报, 2019, 33(17): 2976-2988.
[10] 常悦, 陈支泽, 杨一奇. 聚乳酸-聚己内酯多嵌段立构复合物薄膜的制备及熔融稳定性[J]. 材料导报, 2019, 33(16): 2808-2812.
[11] 彭少贤,蔡小琳,胡欢,赵西坡. 环境友好型增塑剂增韧聚乳酸的最新研究进展[J]. 材料导报, 2019, 33(15): 2617-2623.
[12] 王玉龙, 侯立杰, 刘志勇, 李世宇, 李卓辉. 水性聚氨酯改性环氧树脂乳液的涂膜性能研究[J]. 材料导报, 2019, 33(14): 2456-2460.
[13] 王鑫, 石敏, 余晓磊, 彭少贤, 赵西坡. 聚己二酸对苯二甲酸丁二酯(PBAT)共混改性聚乳酸(PLA)高性能全生物降解复合材料研究进展[J]. 材料导报, 2019, 33(11): 1897-1909.
[14] 赵西坡, 刘畅, 徐敏, 彭少贤. 无机成核剂改善聚乳酸结晶性能的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1158-1164.
[15] 白静静, 苏会博, 刘志伟. 异氰酸酯功能化碳纳米管/热塑性聚氨酯弹性体复合材料的制备及流变性能[J]. 材料导报, 2018, 32(24): 4386-4391.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed