Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 383-388    
  金属与金属基复合材料 |
NiTi合金(B2, B19’和R相)键合特征与弹性性质的第一性原理研究
张然1, 谢东1, 冷永祥2, 景凤娟2, 黄楠2
1 西南交通大学物理科学与技术学院,材料先进技术教育部重点实验室,成都 610031;
2 西南交通大学材料科学与工程学院,成都 610031
First Principle Study on Bonding Characteristics and Elastic Properties of NiTiAlloy (B2, B19’, R Phase)
ZHANG Ran1, XIE Dong1, LENG Yongxiang2, JING Fengjuan2, HUANG Nan2
1 Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031;
2 School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031
下载:  全 文 ( PDF ) ( 1925KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 运用第一性原理方法计算NiTi合金三种相结构(B2、B19’和R相)的电荷密度、态密度、Mulliken布居、弹性常数,在此基础上探究NiTi合金的键合特征、弹性性质及其内在联系。计算结果表明NiTi合金主要成键类型是金属键,其次还包括共价键和离子键。离子键主要由Ti原子向Ni原子转移少量电荷形成,共价键主要由Ni-3d和Ti-3d的轨道杂化形成,此外B19’和R相中Ni-Ni原子间存在电子云重叠也具有共价键特征。弹性性质计算表明三种相结构的NiTi合金均为延性材料,并具有不同程度的弹性各向异性特征。延性强弱顺序依次为B2>R>B19’,弹性各向异性程度的强弱顺序为B19’>B2>R。材料的延脆性和弹性各向异性主要与合金中共价键、金属键的特征和强度有关。金属键具有无方向性特征,金属键越强材料的延性性能会越强;共价键具有方向性特征,共价键越强,同时金属键越弱,则材料的弹性各向异性的程度会越高。本研究揭示了NiTi合金在B2→R→B19’马氏体相变过程中键合特征和弹性性质的变化情况,对NiTi合金器械的设计和应用具有重要的参考意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张然
谢东
冷永祥
景凤娟
黄楠
关键词:  NiTi合金  键合特征  弹性性能  第一性原理    
Abstract: The first principle method is applied to calculate the charge density, density of states, Mulliken population and elastic constants of three phases (B2, B19’ and R phase) of NiTi alloy. Furthermore, the bonding characteristics, elastic properties and intrinsic connections of different phases are investigated. The results show that there are metal bond, covalent bond and ionic bond in the NiTi alloy, and the proportion of metal bond is the largest. Ionic bond is mainly formed by charge transfer between Ti and Ni. The covalent bond is mainly formed by orbital hybridization of Ni-3d orbit and Ti-3d orbit, in addition, Ni and Ni share some charges to form covalent bond in B19’ and R phases. The results of elastic properties show that the three phases NiTi have ductility characteristics and different degrees of elastic anisotropy. The ductility of B2 phase is higher than R phase than B19’ phase and the elastic anisotropy degree of B19’ is larger than B2 phase than R phase. The ductility and elastic anisotropy are mainly related to the characteristics and strength of the covalent bond and metal bond in the alloy. Due to the non-directionality characteristics of metal bond and the directional characteristics of covalent bond, the material with strong metal bond have high ductility; the material with strong covalent bond and weak metal bond have large degree of elastic anisotropy.
Key words:  NiTi alloy    bonding characteristics    elastic properties    first principle
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TG111  
基金资助: 四川省科技厅应用基础研究项目(2019YJ0240)
通讯作者:  Xie_dong_@163.com   
作者简介:  张然,西南交通大学2017级硕士研究生。研究工作主要围绕形状记忆合金和陶瓷材料,开展关于材料性能和界面结构的基础理论和应用研究。
谢东,西南交通大学物理科学与技术学院教授、硕士研究生导师。主要从事真空镀膜、生物材料表面改性、材料力学性能第一性原理计算等方面的研究。
引用本文:    
张然, 谢东, 冷永祥, 景凤娟, 黄楠. NiTi合金(B2, B19’和R相)键合特征与弹性性质的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 383-388.
ZHANG Ran, XIE Dong, LENG Yongxiang, JING Fengjuan, HUANG Nan. First Principle Study on Bonding Characteristics and Elastic Properties of NiTiAlloy (B2, B19’, R Phase). Materials Reports, 2019, 33(Z2): 383-388.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/383
1 Huang Y, Zhu M, Pei Z, et al. Journal of Materials Chemistry A,2016,4(4),1290.
2 Amerinatanzi A, Zamanian H, Shayesteh M N, et al. Bioengineering,2017,4(4),95.
3 Ibrahim H, Jahadakbar A, Dehghan A, et al. Metals,2018,8(3),164.
4 Zeng C Y, Cao S, Li Y Y, et al. Materials Letters,2019,253,99.
5 宫长伟,王轶农,杨大智.物理学报,2006,55(6),002877.
6 朱建新,李永华,孟繁玲,等.物理学报,2008,57(11),7204.
7 Haskins J B, Lawson J W. Journal of Applied Physics,2017,121(20),205103.
8 陈璐,李烨飞,郑巧玲,等.物理学报,2019,68(5),053101.
9 Saebnoori E, Shahrabi T, Sanjabi S, et al. Philosophical Magazine,2015,95(15),1696.
10 Tang S L, Li Y F, Gao Y M, et al. Crystals,2018,8(2),93.
11 Mao P L, Bo Y, Zheng L, et al. Journal of Applied Physics,2015,117(11),115903.
12 谢东,冷永祥,黄楠.物理学报,2013,62(19),505.
13 Cuevas F, Latroche M, Bourée-Vigneron F, et al. Journal of Solid State Chemistry,2006,179(11),3295.
14 Kudoh Y, Tokonami M, Miyazaki S, et al. Acta Metallurgica,1985,33(11),2049.
15 Sitepu H. Textures and Microstructures,2003,35(3-4),185.
16 Segall M D, Lindan P J D, Probert M J, et al. Journal of Physics: Condensed Matter,2002,14(11),2717.
17 Li Y F, Gao Y M, Xiao B, et al. Journal of Alloys & Compounds,2010,502(1),28.
18 Cunha M F, Sobrinho J M B, Souto C R, et al. Measurement,2019,145,55.
19 Wayman C M, Cornelis I, Shimizu K. Scripta Metallurgica,1972,6(2),115.
20 Mercier O, Melton K N, Gremaud G, et al. Journal of Applied Physics,1980,51(3),1833.
21 Hatcher N, Kontsevoi O Y, Freeman A J. Physical Review B Condensed Matter,2016,80(14),144203.
22 Wagner F X, Windl W. Acta Materialia,2008,56(20),6232.
23 Cowley A R. Physical Review B Condensed Matter,1976,13(11),4877.
24 Watt J P. Journal of Applied Physic,1980,51(3),1520.
25 Mouhat F, Coudert F O. Physical Review B,2014,90(22),224104.
26 Voigt W. Lehrbuch der Kristallphysik, Taubner Press, Germany,1928.
27 Reuss A, Angew Z. Mathematics and Mechanics of Solids,1929,9,49.
28 Hill. Proceedings of the Physical Society,1952,65(5),349.
29 胡萌,陈志谦,李春梅,等.中国科学:物理学 力学 天文学,2016,46(6),064601.
30 Pugh S F. Philosophical Magazine,1954,45,823.
31 Frantsevich I N, Voronov F F, Bokuta S A . Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, Naukova Dumka Press, Ukraine,1983.
32 Ranganathan S I, Ostoja-Starzewski M. Physical Review Letters,2008,101(5),055504.
[1] 徐允, 张兆春, 郭海波, 谢耀平. 铟-镧系元素(La,Ce,Pr和Nd)金属间化合物磁学和热力学性质的第一性原理计算[J]. 材料导报, 2020, 34(2): 2093-2099.
[2] 石全举, 顾振杰, 周圣丰. 激光原位合成NiTi基复合涂层的微结构特征与耐蚀性能[J]. 材料导报, 2020, 34(2): 2110-2116.
[3] 贾颖. Li在石墨烯表面吸附与迁移的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 43-47.
[4] 黄泰愚, 范舟, 刘建仪. 硫在镍基合金钝化膜NiO表面吸附的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 380-382.
[5] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[6] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[7] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[8] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[9] 王枭, 于晓华, 李晓宇, 刘成, 钟毅, 詹肇麟, 邓久帅. 纯Fe表面机械研磨处理对Ti原子扩散特性影响的第一性原理计算及实验验证[J]. 材料导报, 2019, 33(6): 1017-1021.
[10] 周勇, 党墨含, 孙良, 翟文彦, 董会, 高倩, 赵飞, 彭建洪. Mg13Al14和Mg17Al12中间合金的第一性原理研究[J]. 材料导报, 2019, 33(24): 4111-4116.
[11] 马容, 张兆春, 郭海波, 谢耀平. 锂氦在钨中的行为及其对钨力学和热力学性质影响的第一性原理研究[J]. 材料导报, 2019, 33(24): 4164-4169.
[12] 莫晓华, 蒋卫卿. Fe、Co和Ni掺杂LiBH4放氢性能的第一性原理研究[J]. 材料导报, 2019, 33(2): 225-229.
[13] 李亚敏, 江璐, 赵旺, 陈银萍. 铜掺杂对γ'相影响的第一性原理研究[J]. 材料导报, 2019, 33(18): 3085-3088.
[14] 宋政骢, 米国发, 王有超, 刘晨, 历长云. W-Re二元合金弹性和热力学性质的第一性原理计算[J]. 材料导报, 2019, 33(16): 2785-2792.
[15] 郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed