Please wait a minute...
材料导报  2019, Vol. 33 Issue (8): 1340-1347    https://doi.org/10.11896/cldb.18030029
  无机非金属及其复合材料 |
硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化
王家滨1, 牛荻涛2,3
1 西安工业大学建筑工程学院,西安 710021
2 西安建筑科技大学土木工程学院,西安 710055
3 西安建筑科技大学西部绿色建筑国家重点实验室,西安 710055
Study on the Durability Performance of Shotcrete Lining Under Coupling Effect of Nitric Acid Attack and Freeze-thaw Cycles (Part I):Deterioration Law of Performance and Air-void Structure
WANG Jiabin1, NIU Ditao2,3
1 School of Civil & Architecture Engineering, Xi'an Technological University, Xi'an 710021
2 College of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055
3 National Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an 710055
下载:  全 文 ( PDF ) ( 8102KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以寒冷地区喷射混凝土单层永久衬砌长大公路隧道为工程背景,汽车尾气中氮氧化物与水产物硝酸为冻融介质,采用快速冻融循环法,开展喷射混凝土冻融循环试验,研究了硝酸侵蚀冻融循环共同作用对喷射混凝土耐久性能的影响。以直线导线法对硝酸侵蚀/冻融循环共同作用下混凝土的孔结构进行表征,探究了共同作用喷射混凝土的冻融损伤过程。综合分析认为,硝酸中氢离子对混凝土产生化学侵蚀,硝酸根离子在冻融循环过程中产生盐冻的效果,加快了喷射混凝土冻融损伤劣化速度。共同作用喷射混凝土的抗冻性随水胶比增大而降低,随粉煤灰掺量增大先提升后降低。但随钢纤维掺量增大,喷射混凝土动弹性模量损失率和质量损失率先增大后减小,抗压强度则逐渐增大。随着冻融循环次数增多,喷射混凝土孔结构劣化,大孔径孔和微裂缝数量增大,加速了硝酸向混凝土内部扩散,抗冻性能快速下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王家滨
牛荻涛
关键词:  喷射混凝土衬砌  硝酸侵蚀  冻融损伤  共同作用  耐久性能  孔结构    
Abstract: As the engineering background of long tunnel with shotcrete single-layer lining in the cold area, freezing and thawing test of shotcrete was carried out using rapid freeze-thaw mothed and nitric acid solution which formed by nitrogen oxide in automobile exhaust and vapor. The performance deterioration of dynamic elastic modulus, mass and compressive strength was investigated. Afterwards, a high-resolution image analyzer capturing elaborate graphical layouts of air-void structure using the linear transverse method was employed to study the damaged process of shotcrete under coupling effects. The results show that hydrogen ion of nitric acid solution produces chemical reaction with hydration products of shotcrete, and the salt frost phenomenon is appeared in freezing and thawing by effect of nitrate ion. Therefore, nitric acid accelerates shotcrete frost damage speed. Frost resistance of shotcrete with coupling action depends to mix proportion in term of water-binder ratio, dosage of fly ash and steel fiber content. With water-binder ratio increased, shotcrete frost resistance decreased. While the performance increased at first and then decreased with fly ash replacement increased. With steel fiber content increased, the loss ratio of dynamic elastic modulus and mass increased firstly and then decreased, while compressive strength increased. About air-void structure, with increasing of freeze-thaw cycles, air-void structure deteriorates and number of harmful voids and microcracks increases, what causes nitric acid diffusing in shotcrete and leads to the frost resistance of shotcrete decreasing rapidly.
Key words:  shotcrete lining    nitric acid attack    frost damage    coupling action    durability performance    pore structure
               出版日期:  2019-04-25      发布日期:  2019-04-28
ZTFLH:  TU528.44  
基金资助: 国家自然科学基金重大项目支课题(51590914);陕西省自然科学基金(2018JQ5032);陕西省教育厅自然科学研究专项(18JK0376);西安工业大学校长基金项目(XAGDXJJ17019)
作者简介:  王家滨,西安工业大学建筑工程学院讲师。2017年1月毕业于西安建筑科技大学结构工程专业,获工学博士学位。Email: wangjiabin@xatu.edu.cn
引用本文:    
王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
WANG Jiabin, NIU Ditao. Study on the Durability Performance of Shotcrete Lining Under Coupling Effect of Nitric Acid Attack and Freeze-thaw Cycles (Part I):Deterioration Law of Performance and Air-void Structure. Materials Reports, 2019, 33(8): 1340-1347.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18030029  或          http://www.mater-rep.com/CN/Y2019/V33/I8/1340
1 Alum T. Sprayed concrete lined tunnel, Taylor & Francis,New York, 2012.
2 Gary B. Hemphill. Practical tunnel construction, Jone Wiley & Sons, Hoboken, 2013.
3 Christopher K Y L , Lai R, Lee A Y F.Cement and Concrete Research, 2005, 35, 788.
4 Tomas F, Garshol K F, Tomisawa N.Tunneling and Underground Space Technology, 2001,16, 295
5 Wang J B, Niu D T. China Civil Engineering Jounrnal, 2018,51(2), 95(in Chinese).
王家滨, 牛荻涛.土木工程学报, 2018, 51(2), 95.
6 Wang J, Niu D, Ding S, et al. Construction and Building Materials, 2015,78, 203.
7 Editorial Department of China Journal of Highway and Transport. China Journal of Highway and Transport, 2015, 28(5),1(in Chinese).
《中国公路学报》编辑部.中国公路学报, 2015, 28(5),1.
8 Lei H G, Wu T, Lv J G. Construction Structure, 2007, 37(S), 8(in Chinese).
雷宏刚, 吴涛, 吕建国.建筑结构, 2007, 37(S),8.
9 Glass G K, Buenfeld N R. Cement & Concrete Research, 1999, 29(10),1681.
10 Zhang Y N, Liu J S, Li Z Y, et al. Industrial Construction, 2015, 45(11), 78.
张延年, 刘金升, 李朝阳,等.工业建筑, 2015, 45(11),78.
11 Xiao J, Qu W, Li W, et al. Construction & Building Materials, 2016, 115,486.
12 Yuan H, Dangla P, Chatellier P, et al. Cement & Concrete Research, 2015, 70(2),29.
13 Yuan H, Dangla P, Chatellier P, et al. Cement & Concrete Research, 2013, 53(2),267.
14 Fan Y F, Hu Z Q, Zhang Y Z, et al. Construction & Building Materials, 2010, 24(10),1975.
15 Chen M C, Wang K, Xie L. Engineering Failure Analysis, 2013, 27(1),272.
16 Ying R R, Zhu H H. Journal of Yangzhou University (Natural Science Edition), 2011, 14(3),70(in Chinese).
尹蓉蓉, 朱合华. 扬州大学学报(自然科学版), 2011, 14(3),70.
17 ASTM C457-2016. American Society for Testing and Materials, 2016.
18 Wu Z W. Journal of the Chinese Ceramic Society, 1979, 11(3),82(in Chinese).
吴中伟.硅酸盐学报, 1979, 11(3),82.
[1] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[2] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[3] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[4] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[5] 丁聪, 郭丽萍, 雷东移, 徐燕慧, 朱玉, 邓忠华. 轻质保温高延性水泥基复合材料的拉伸性能与耐久性能[J]. 材料导报, 2019, 33(10): 1652-1658.
[6] 朱学良, 魏智强, 白军善, 赵文华, 冯旺军, 姜金龙. 碳包覆氧化亚钴纳米颗粒的制备与性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 621-625.
[7] 苏丽, 牛荻涛, 罗大明. 珊瑚骨料混凝土力学性能及耐久性能研究[J]. 材料导报, 2018, 32(19): 3387-3393.
[8] 杨建明, 汤阳, 顾海, 刘永加, 黄大志, 陈劲松. 3D打印制备多孔结构的研究与应用现状[J]. 材料导报, 2018, 32(15): 2672-2683.
[9] 左迎峰, 肖俊华, 李萍, 王健, 李贤军, 吴义强. 水灰比对镁系无机轻质材料性能的影响规律[J]. 《材料导报》期刊社, 2018, 32(14): 2370-2375.
[10] 王丽, 王哲, 宁国艳, 沈玉林, 王喜明. 木基导电电磁屏蔽材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2320-2328.
[11] 吴燕飞, 陶凯, 白文静, 曹大丽, 李笑迎, 梁云霄. 整体型环氧树脂大孔聚合物的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(8): 31-34.
[12] 肖俊华,詹满军,陈秀兰,王 健,左迎峰,吴义强. 双氧水对镁系无机泡沫材料性能和孔结构的影响[J]. 《材料导报》期刊社, 2017, 31(24): 96-100.
[13] 王倩楠, 顾春平, 孙伟. 水泥-粉煤灰-硅灰基超高性能混凝土水化过程微观结构的演变规律*[J]. CLDB, 2017, 31(23): 85-89.
[14] 张云升, 张文华, 陈振宇. 综论超高性能混凝土:设计制备·微观结构·力学与耐久性·工程应用*[J]. CLDB, 2017, 31(23): 1-16.
[15] 张虎. 自密实钢纤维轻骨料混凝土的早期性能与损伤分析*[J]. 《材料导报》期刊社, 2017, 31(20): 124-128.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed