Please wait a minute...
材料导报  2019, Vol. 33 Issue (8): 1276-1284    https://doi.org/10.11896/cldb.17120234
  无机非金属及其复合材料 |
不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能
郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋
西南林业大学材料科学与工程学院,云南省高校生物质化学炼制与合成重点实验室,昆明 650224
Physicochemical Properties of Torrefied Biochar from Different Biomass Feedstock and Its Adsorption Performance for Methylene Blue
ZHENG Yunwu, TAO Lei, KANG Jia, HUANG Yuanbo, LIU Can, ZHENG Zhifeng
Key Laboratory for Biomass Chemical Refinery & Synthesis, Yunnan Province, College of Materials Science and Engineering, Southwest Forestry University, Kunming 650224
下载:  全 文 ( PDF ) ( 3104KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 选择四种生物质为原料,经300 ℃热裂解制成生物质烘焙炭,研究生物烘焙炭理化特性对亚甲基蓝的吸附特性以及动力学、热力学特性,分析了pH值、吸附时间、溶液初始质量浓度、生物质投加量对吸附效果的影响。同时对吸附动力学以及吸附机制进行研究。结果表明:生物质烘焙炭对亚甲基蓝的吸附约60 min即达平衡;适宜pH值为8~12,平衡吸附量随着初始浓度的增加而增加。四种生物质烘焙炭对亚甲基蓝的等温吸附均可用Langmuir方程和Frcundlich方程拟合,木粉烘焙炭属于单分子层吸附,而壳类生物质烘焙炭以多分子层吸附为主,吸附过程符合准二级动力学方程,即以化学吸附为主,吸附过程由膜扩散和颗粒内扩散共同控制,颗粒内扩散为主要吸附速率控制步骤,吸附过程为吸热反应,高温有利于吸附体系的自发进行。最终得到四种原料烘焙炭吸附能力的强弱顺序为:核桃壳烘焙炭>木粉烘焙炭>椰子壳烘焙炭>橡胶籽壳烘焙炭。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑云武
陶磊
康佳
黄元波
刘灿
郑志锋
关键词:  烘焙炭  理化性能  吸附性能  亚甲基蓝  动力学    
Abstract: Torrefied biochrs were produced from the pyrolysis of rubber seed shell, walnut, wood power as well as coconut shell respectively, at 300 ℃. The adsorbents of methylene blue (MB) aqueous solution by four biochars were investigated. The effect of MB of pH, contract time, initial solution concention and adsorbent dosage on the adsorption properties was also estimated. The kinetic data were analysised by the pseudo-first, second-order kinetic and intraparticle diffusion, and the equilibrium data were analyzed using the Langmuir and the Freundlich isotherms models. The results showed that:adsorption equilibrium was reached within 60 min at 298.15 K under the proper pH value between 8.0—12, and the adsorption capacity increasing with the rise of initial MB concentration. While, it was found that the adsorption kinetic followed the second-order mo-del. This suggested that the adsorption of MB by pyrocarbon was a chemisorptions process, and the intraparticle diffusion was not the primary rate-determining step. Besides, Langmuir and the Freundlich isotherms models were all fitting the equilibrium data. The thermodynamics properties showed that adsorption of four biomass was endothermic and spontaneous with the rise of the temperature, the adsorption degree of four biomass pyrocarbon were as followed:walnut shell>wood power>coconut shell>rubber seed shell
Key words:  torrefied carbon    physicochemical properities    adsorption performance    methylene blue    kinetic
               出版日期:  2019-04-25      发布日期:  2019-04-28
ZTFLH:  TB33  
基金资助: 云南省科技厅面上项目(2018FB071);云南省教育厅教师类项目(2018JS325);国家自然科学基金(31670599)
作者简介:  郑云武,西南林业大学副教授,2014年9月至2017年6月,在东北林业大学获得生物工程专业工学博士学位,毕业后任教西南林业大学,email: zhengzhifeng666@163.com。郑志锋,厦门大学闽江学者特聘教授,西南林业大学教授,博士研究生导师,教育部新世纪优秀人才
引用本文:    
郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
ZHENG Yunwu, TAO Lei, KANG Jia, HUANG Yuanbo, LIU Can, ZHENG Zhifeng. Physicochemical Properties of Torrefied Biochar from Different Biomass Feedstock and Its Adsorption Performance for Methylene Blue. Materials Reports, 2019, 33(8): 1276-1284.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17120234  或          http://www.mater-rep.com/CN/Y2019/V33/I8/1276
1 Chen W F, Zhang W M, Meng J, et al. Engineering Science, 2011, 130(2), 83(in Chinese).
陈温福, 张伟明, 孟军, 等.中国工程科学, 2011, 130(2), 83.
2 Xie Z B, Liu Q, Xu Y P, et al. Soils, 2012, 4(36), 857(in Chinese).
谢祖彬, 刘琦, 许燕萍, 等.土壤, 2012, 4(36), 857.
3 Han R, Wang Y, Yu W, et al. Journal of Hazardous Materials, 2007, 141, 713.
4 Xu X, Cao X, Zhao L, et al. Environmental Science and Pollution Research, 2013, 20,358.
5 Rao R A K, Khan M A. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2009, 332,121.
6 El Jamal M M, Ncibi M C. Acta Chimica Slovenica, 2012, 59, 24.
7 Chen D, Li R, Bian R, et al. BioResources, 2017, 12,1662.
8 Ma L, Zhu Y, Huang X, et al. In:Conference Record of the 5th Asia Conference on Mechanical and Materials Engineering.Tokyo, 2017,pp.012021.
9 Kim B S, Lee H W, Park S H, et al. Environmental Science and Pollution Research, 2016, 23,985.
10 Lee H W, Park R, Park S H, et al. Carbon Letters, 2016, 18,49.
11 Wang Q, Wang B W, Tan G C, et al. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(6),1122(in Chinese).
王棋, 王斌伟, 谈广才, 等.北京大学学报 (自然科学版), 2017, 53(6), 1122.
12 Taiwo A F, Chinyere N J. Journal of Materiasl Science and Chemical Engineering, 2016, 4, 39.
13 Essandoh M, Wolgemuth D, Pittman C U, et al. Environmental Science and Pollution Research, 2017, 24,4577.
14 Abdelhadi S O, Dosoretz C G, Rytwo G, et al. Bioresource. Technology, 2017, 244,759.
15 Xu X, Hu X, Ding Z, et al. Chemical. Engineering Journal, 2017, 308,863.
16 Li F, Shen K, Long X, et al. Plos One, 2016, 11, e0148132.
17 Liu P, Ptacek C J, Blowes D W, et al. Journal of Hazardous Materials, 2016, 308,233.
18 Chang C, Liu T Q, Wang Y T, et al. Acta Scientiae Circumstantiae, 2017, 37(7),2680(in Chinese).
常春, 刘天琪, 王瑀婷, 等.环境科学学报, 2017, 37(7),2680.
19 Wu H L, Che X D, Ding Z H, et al. Journal of Agro-Environment Science, 2015 (8), 1575(in Chinese).
吴海露, 车晓冬, 丁竹红, 等.农业环境科学学报, 2015 (8), 1575.
20 Hou S Q, Wang H Z, Sun J X, et al. Chinese Journal Environmental Engineering, 2009, 3(12), 2133(in Chinese).
侯少芹, 王海增, 孙金香, 等.环境工程学报, 2009, 3(12), 2133.
21 Kobya M, Demirbas E, Senturk E, et al. Bioresource Technology, 2005, 96, 1518.
22 Kavitha D, Namasivayam C. Bioresource Technology, 2007, 98, 14.
23 Liu Y, Zhao X, Li J, et al. Desalination and Water Treatment, 2012, 46,115.
24 Ding Z, Wan Y, Hu X, et al. Journal of Industrial Engineering Chemistry, 2016, 37,261.
25 Rafatullah M, Sulaiman O, Hashim R, et al. Journal of Hazardous Materials, 2010, 177,70.
26 Lonappan L, Rouissi T, Das R K, et al. Waste Management, 2016, 49, 537.
27 Ji X Q, Lv L, Chen F, et al. Acta Scientiae Circumstantiae, 2016, 36(5), 1648(in Chinese).
季雪琴, 吕黎, 陈芬, 等.环境科学学报, 2016, 36(5), 1648.
28 Fan S, Tang J, Wang Y, et al. Journal of Molecular Liquids, 2016, 220,432.
29 Khambhaty Y, Mody K, Basha S, et al. Chemical Engineering Journal, 2009, 145(3), 489.
30 Si H Y, Li B, Wang T, et al. Chemistry and Industry of Forest Products, 2013, 33(2), 1(in Chinese).
司红燕, 李斌, 王霆, 等.林产化学与工业, 2013, 33(2),1.
31 Ho Y S, Ofomaja A E. Process Biochemistry, 2005, 40(11), 3455.
[1] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[2] 刘朝, 邱舒怿, 黄红梅, 郭萍, 霍二光. 吸热型碳氢燃料正辛烷的热分解机理[J]. 材料导报, 2019, 33(8): 1251-1256.
[3] 王杏娟, 靳贺斌, 朱立光, 朴占龙, 王博, 曲硕. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019, 33(8): 1395-1400.
[4] 王宇鲲, 魏永刚, 彭博, 李博, 周世伟. 镁质贫镍红土矿热分解理论计算与实验研究[J]. 材料导报, 2019, 33(8): 1406-1411.
[5] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[6] 马晓波, 王进卿, 池作和, 张光学, 詹明秀. h-BN基复合陶瓷涂层防锅炉受热面的硫酸盐腐蚀性能[J]. 材料导报, 2019, 33(6): 960-964.
[7] 王一雍, 周新宇, 金辉, 梁智鹏. 超声辅助电沉积Ni-Co/Y2O3复合镀层的电化学研究[J]. 材料导报, 2019, 33(6): 1011-1016.
[8] 郭帅, 焦学健, 李丽君, 董抒华, 孙丰山, 单海瑞. 近场动力学方法研究复合材料失效的进展[J]. 材料导报, 2019, 33(5): 826-833.
[9] 胡俊, 任建伟, 马巍, 刘建华, 王爱国. 冲击荷载下含随机缺陷的梯度蜂窝材料的力学性能[J]. 材料导报, 2019, 33(16): 2777-2784.
[10] 蒋亮, 李佳欣, 吴婷, 杨车, 尹伟杰, 韩凤兰, 陈宇红. CaO-SiO2-FeO-MgO体系钢渣固相改质过程中的镁铁尖晶石生长机理[J]. 材料导报, 2019, 33(15): 2490-2496.
[11] 盛鹰, 朱星亮, 曾祥国, 贾彬, 文军. 裂纹扩展和裂尖变形机理的多尺度耦合数值模拟方法[J]. 材料导报, 2019, 33(14): 2419-2425.
[12] 李雅明, 李艳军, 张江, 丛野, 崔正威, 袁观明, 董志军, 邹涛, 李轩科. K3V5O14的合成及光催化性能和吸附性能[J]. 材料导报, 2019, 33(12): 1926-1931.
[13] 王义飞, 高东强, 田普建, 任威, 刘延辉, 宋文杰, 杨艳玲, 杨光. 高铌TiAl合金中包晶α相消除的热力学及动力学分析[J]. 材料导报, 2019, 33(12): 2014-2018.
[14] 胡洋, 赵祺, 芦艾, 王志勇, 沈思敏. 苯基硅橡胶泡沫的制备及阻尼性能[J]. 材料导报, 2019, 33(10): 1752-1755.
[15] 程 波,向真才,郭 恒,熊云威. 煤岩材料对瓦斯吸附性能的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1513-1518.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed