Please wait a minute...
材料导报  2019, Vol. 33 Issue (8): 1272-1275    https://doi.org/10.11896/cldb.17080280
  无机非金属及其复合材料 |
PAS烧结SiC/h-BN复相陶瓷的韧性表征
杨万利1, 代丽娜1, 樊振宁1, 张瀚晨1, 史忠旗2
1 西安航天复合材料研究所超码科技有限公司, 西安 710025
2 西安交通大学材料科学与工程学院,西安 710049
Toughness Characterization of SiC/h-BN Ceramic Composites Prepared by PAS Sintering Process
YANG Wanli1, DAI Lina1, FAN Zhenning1, ZHANG Hanchen1, SHI Zhongqi2
1 Chaoma Technology Co. Ltd, Xi'an Aerospace Composites Research Institute, Xi'an 710025
2 School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049
下载:  全 文 ( PDF ) ( 2104KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探讨等离子活化烧结(PAS)工艺制备的SiC/h-BN复相陶瓷的失效特性,采用三种韧性表征方式(断裂韧性KIC、韧化比、R曲线)研究评判该类复相材料破坏的韧性依据,并对裂纹扩展的显微形貌进行分析与讨论,建立了复相陶瓷失效评价的模型。结果表明:SiC/h-BN复相陶瓷两种试样的KIC都随着h-BN含量的增加而降低;以韧化比(TI)作为韧性指标,发现h-BN含量越多,复相陶瓷的韧性越好;结合R曲线可知,h-BN含量增多,复相陶瓷的R曲线呈陡峭的上升趋势,但却有着较低的裂纹扩展门槛值。由此可知,三种韧性表征结果之间存在着相互矛盾。基于显微形貌分析发现,复相陶瓷中存在的层状h-BN增加了能量耗损,裂纹在扩展过程中发生偏转、分叉和桥联等现象。以KIC作韧性指标更多反映的是裂纹萌生的阻力,韧化比TI更多反映的是裂纹扩展的阻力。基于材料在工程应用中的不同应力状态,应选择合适的韧性参数来表征,才能更直接地指导复相陶瓷的应用及失效评价。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨万利
代丽娜
樊振宁
张瀚晨
史忠旗
关键词:  碳化硅/六方氮化硼  阻力曲线  断裂韧性  韧化比    
Abstract: In order to investigate the failure characteristics of SiC/h-BN ceramic composites prepared by the plasma activated sintering (PAS) process, three kinds of toughness characterization methods (fracture toughness KIC, toughness ratio and R curve) were used as the basis to toughness for failure judgment of these composites. The microstructure of crack extension was also analyzed and discussed, and the failure model of the composites was established. The results show that both KIC was decreased with the h-BN content increase for the composites. The toughness ratio (TI) increased with the increasing h-BN content indicating the better toughness. Combined with the result of R curves, the composite with more h-BN content exhibited steeper rise R curve tendency, which had a lower crack extension threshold. So, there is a contradiction between the three kinds of toughness results. Based on the microstructure analysis, the h-BN plates existing in the composites could consume more fracture surface energy, and the cracks deflection, branching and bridging were occurred during cracks extension. Hence, KIC as the toughness index reflected the resistance of crack initiation, and TI indicating the crack extension resistance. To guide the application and failure evaluation of these ceramic composites, proper parameter should be used to characterize toughness under the different stress state of materials in engineering application.
Key words:  silicon carbide/hexagonal boron nitride    R-curve    fracture toughness    toughness ratio
               出版日期:  2019-04-25      发布日期:  2019-04-28
ZTFLH:  TQ174  
基金资助: 中国航天科技集团有限公司科技创新研发项目(2017-12);国家“863”高科技项目(2012AA040209)
作者简介:  杨万利,西安航天复合材料研究所,西安超码科技有限公司,高级工程师,email: yangwanli@xacmkj.com。
引用本文:    
杨万利, 代丽娜, 樊振宁, 张瀚晨, 史忠旗. PAS烧结SiC/h-BN复相陶瓷的韧性表征[J]. 材料导报, 2019, 33(8): 1272-1275.
YANG Wanli, DAI Lina, FAN Zhenning, ZHANG Hanchen, SHI Zhongqi. Toughness Characterization of SiC/h-BN Ceramic Composites Prepared by PAS Sintering Process. Materials Reports, 2019, 33(8): 1272-1275.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17080280  或          http://www.mater-rep.com/CN/Y2019/V33/I8/1272
1 Eichler J, Lesniak C. Journal of the European Ceramic Society, 2008, 28, 1105.
2 Wang X D, Qiao G J, Jin Z H. Journal of the American Ceramic Society, 2004, 87, 565.
3 Kishan R N, Mulay V, Jaleel M. Journal of Materials Science Letters, 1994, 13, 1516.
4 Roulet F, Tristant P, Desmaison J, et al. Journal of the European Ceramic Society, 1997, 17, 1877.
5 Jones M I, Etzion R, Metson J, et al. Journal of the Ceramic Society of Japan, 2008, 116, 712.
6 Yan M, Fan Z. Journal of Materials Science, 2001, 36, 285.
7 Hu Y W, Si W J, Gong J H. Rare Metal Materials and Engineering, 2011(S1), 156(in Chinese).
胡一文, 司文捷, 龚江宏.稀有金属材料与工程, 2011(S1), 156.
8 Lysiak G. Journal of Food Engineering, 2007, 83, 436.
9 Yang W L, Kang W J, Zhang Y H, et al. Journal of Solid Rocket Technology, 2016, 39(5), 692(in Chinese).
杨万利, 康文杰, 张永辉 等.固体火箭技术, 2016, 39(5), 692.
10 Kovar D, Bennison S J, Readey M J. Acta Materialia, 2000, 48, 565.
11 Qiao G J, Wang Y L, Jin Z H, et al. Journal of the Chinese Ceramic Society, 1996, 24(4), 400(in Chinese).
乔冠军, 王永兰, 金志浩, 等.硅酸盐学报, 1996, 24(4), 400.
12 Anstis G R, Chantikul P, Lawn B R, et al. Journal of the American Ceramic Society, 1981, 64, 533.
13 Chantikul P, Anstis G R, Lawn B R, et al. Journal of the American Ceramic Society, 1981, 64, 539.
14 Li D Y, Qiao G J, Jin Z H. Ceramics International, 2004, 30, 213.
15 Ramachandran N, Shetty D K. Journal of the American Ceramic Society, 1991, 74, 2634.
16 Ralph F, Krause Jr. Journal of the American Ceramic Society, 1988, 71, 338.
17 Wang X D, Qiao G J, Jin Z H. Journal of the American Ceramic Society, 2004, 87, 565.
18 Shi Z Q, Wang J P, Qiao G J, et al. Materials Science and Engineering A, 2008, 492, 29.
[1] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[2] 李洪峰, 曲春艳, 王德志, 刘仲良, 顾继友, 张杨. 短切玻纤增强PEKK与BDM/DABPA共混体系固化反应动力学及断裂韧性[J]. 材料导报, 2018, 32(6): 971-976.
[3] 汪倡, 庞学佳, 高宗鸿, 刘金娜, 房永超, 崔秀芳, 刘二宝, 金国. YSZ纤维增强等离子喷涂Al2O3/8YSZ涂层耐磨性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 563-568.
[4] 王凤彪, 张嘉易, 丁茹, 李银玉, 李丽丽, 陈松. 超声辅助微弧氧化Ti-13Nb-13Zr合金制备仿生涂层及其断裂力学性能*[J]. 《材料导报》期刊社, 2017, 31(16): 46-50.
[5] 黄哲远, 王文先, 闫志峰, 张婷婷. 定向凝固多晶硅在微纳尺度下的力学性能研究*[J]. 《材料导报》期刊社, 2017, 31(14): 11-15.
[6] 毛卫国, 杨鹏, 戴翠英, 何远武, 万杰. 脆性涂层材料断裂韧性和残余应力压痕表征技术综述*[J]. 《材料导报》期刊社, 2017, 31(13): 1-11.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed