Please wait a minute...
材料导报  2019, Vol. 33 Issue (8): 1285-1288    https://doi.org/10.11896/cldb.18010243
  无机非金属及其复合材料 |
热解温度对竹炭黑基本性能的影响
王留成1,2, 薛蕾3, 郭丹丹2, 李伊光2, 陈冲冲1
1 郑州大学化工与能源学院,郑州 450000
2 河南炭索新材料科技有限公司,郑州 450000
3 河南省科学技术信息研究院,郑州 450000
Effects of Pyrolysis Temperature on Basic Properties of Bamboo Biochar
WANG Liucheng1,2, XUE Lei3, GUO Dandan2, LI Yiguang2, CHEN Chongchong1
1 Chemical Engineering and Energy of Zhengzhou University, Zhengzhou 450000
2 Henan Tansuo New Materials Technology Co., Ltd., Zhengzhou 450000
3 Science and Technology Information Institute of Henan Province, Zhengzhou 450000
下载:  全 文 ( PDF ) ( 2376KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用低温快速连续热解工艺,考察了不同热解温度对竹炭黑性能的影响。通过对样品基本工业数据、红外、热重、粒径等性能进行表征,结果表明:竹子纤维热解程度随温度的升高而提高,氢和氧元素的含量逐渐减少,固定碳含量和低位燃烧热值大幅提高,其中固定碳含量达69.2%,热值最高为29.72 MJ/kg;且竹炭黑的可磨性大幅改善,为竹炭黑在燃料及炭材料上的应用研究提供了基础数据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王留成
薛蕾
郭丹丹
李伊光
陈冲冲
关键词:  竹子  低温热解  竹炭黑  粒径分布  可磨性    
Abstract: The effect of different temperatures on the properties of bamboo biochar was researched and discussed, which was prepared by low temperature rapid continuous pyrolysis process. The basic industrial datas, infrared, thermogravimetric, particle size and other properties of the sample were characterized.The results showed that the pyrolysis degree of bamboo fiber was improved with the increase of temperature, hydrogen and oxygen content gradually decreased and the fixed carbon content and low heating value was significantly increased, whose values are 69.2% and 29.72 MJ/kg, respectively, and the grind ability of biochar was improved significantly, providing a theoretical basis for the research on the fuel and carboniferous material.
Key words:  bamboo    low-temperature pyrolysis    bamboo biochar    partical size distribution    grindability
               出版日期:  2019-04-25      发布日期:  2019-04-28
ZTFLH:  X712  
作者简介:  王留成,郑州大学教授,2005年获工学博士学位,主要从事新领域精细化学品及化工新材料的开发,email: wanglc@zzu.edu.cn。
引用本文:    
王留成, 薛蕾, 郭丹丹, 李伊光, 陈冲冲. 热解温度对竹炭黑基本性能的影响[J]. 材料导报, 2019, 33(8): 1285-1288.
WANG Liucheng, XUE Lei, GUO Dandan, LI Yiguang, CHEN Chongchong. Effects of Pyrolysis Temperature on Basic Properties of Bamboo Biochar. Materials Reports, 2019, 33(8): 1285-1288.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18010243  或          http://www.mater-rep.com/CN/Y2019/V33/I8/1285
1 Zhang T, Liang F, Hu W, et al. Waste Management & Research, 2017, 35(12),1220.
2 Yang Q P, Ou Y M, Yang G Y, et al. Chinese Journal of Plant Ecology, 2016, 40(3),264(in Chinese).
杨清培, 欧阳明, 杨光耀, 等.植物生态学报, 2016, 40(3),264.
3 Hall M. Utilizing bamboo biochar for carbon sequestration and local economic development. Springer,New York, 2013.
4 Li W, Shang H. Journal of Forestry Research, 2018, 29(4),1.
5 Mohamed I, Zhang G S, LI Z G, et al. Ecological Engineering, 2015, 84(11), 67.
6 Wang X X, Zou P, Fu J R, et al. Journal of Agro-Environment Science, 2014, 1,198.
7 Gao H Y, Chen X X, Zhang W, et al. Journal of Northwest A & F University, 2013, 41,69.
8 Tao X, Lou L, Ling L, et al. Science of the Total Environment, 2012, 414(414),727.
9 Wang J, Song L, Zhang Y Y, et al. Journal of Bamboo Research, 2017, 36(1),49(in Chinese).
王进, 宋丽, 张瑶瑶, 等.竹子研究汇刊, 2017, 36(1),49.
10 Chen S G. Environment and Sustainable Development, 2017, 42(1),174(in Chinese).
陈双贵.环境与可持续发展, 2017, 42(1),174.
11 Peterson S C, Chanderasekaran S R, Sharma B K. Journal of Elastomers & Plastics, 2016, 48(4),289.
12 Wang J, Jiang T, Liu W, et al. Environmental Engineering & Management Journal, 2016, 15(1),105.
13 Liu D D, Li Y G, Wang M Q, et al. Advances of Power System & Hydroelectric Engineering, 2017, 33(7),105(in Chinese).
刘大贵, 李伊光, 王孟晴, 等.电网与清洁能源, 2017, 33(7),105.
14 Liu Z, Fei B, Jiang Z, et al. Bioresource Technology, 2014, 167(3), 94.
15 Chen D, Yu X, Chao S, et al. Bioresource Technology, 2016, 218(10),751.
No related articles found!
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed