Please wait a minute...
材料导报  2019, Vol. 33 Issue (7): 1125-1132    https://doi.org/10.11896/cldb.17120274
  无机非金属及其复合材料 |
电催化氧化处理难降解废水用电极材料的研究进展
赵媛媛1,2, 王德军1,2, 赵朝成1,2
1 中国石油大学(华东)化学工程学院,青岛 266580
2 石油石化污染物控制与处理国家重点实验室,北京 102206
Progress in Electrode materials for Refractory Wastewater Treatment by Electro-catalytic Oxidation
ZHAO Yuanyuan1,2, WANG Dejun1,2, ZHAO Chaocheng1,2
1 College of Chemical Engineering, China University of Petroleum (East China),Qingdao 266580
2 State Key Laboratory of Petroleum Pollution Control, Beijing 102206
下载:  全 文 ( PDF ) ( 3243KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着石油化工、医药等工业的迅速发展,工业废水中难降解物质与日俱增,采用传统的水处理方法已难以达到环保要求。电催化氧化技术主要利用电极表面产生的活性物质羟基自由基进行氧化降解,具有氧化能力强、无需添加化学药剂、无二次污染的优势,而且电催化氧化工艺操作简单、处理条件温和,在处理难降解废水方面具有诸多优势。电催化氧化技术的核心部件是阳极,因此阳极材料的开发一直是研究人员关注的重点。一般要求阳极材料具有析氧电位高、电催化活性高、耐腐蚀、稳定性好、价格低廉等特点。目前常用的阳极材料有钛基金属氧化物阳极(SnO2电极和PbO2电极)和合成掺硼金刚石薄层电极,但是这些材料存在使用寿命短、制作成本高等问题。通过改性制备复合金属氧化物阳极可以改善上述问题,常用的改性方法包括掺杂离子、引入中间层、掺杂纳米颗粒、调控电极材料的微观形貌等。改性可以提高电极电催化性能、导电性及稳定性,增大电极的反应面积,延长电极寿命。因此复合金属氧化物阳极的制备是阳极材料研究的重点。
在二维电极的基础上引入粒子电极可以构成三维电极系统。在三维电极系统中,粒子电极在电场作用下,会极化形成一个个微型电解槽,极大地增加了反应面积。因而三维电极相比于二维电极具有面体比大、电催化效率更高、能耗更低的优势,因此高催化活性、高稳定性的粒子电极的研制成为了电催化氧化技术领域新的研究方向。目前,常用的粒子电极材料主要有碳材料(活性炭、炭气凝胶等)、金属氧化物(Al2O3 、Fe3O4等)、陶瓷和矿物类等。
本文从电催化氧化的机理以及三维电极的工作原理出发,综述了在电催化氧化处理废水中广泛应用的电极材料,包括钛基金属氧化物阳极、合成掺硼金刚石薄层电极,重点介绍了在三维电极系统中使用的粒子电极。并对今后废水处理中电催化氧化电极材料的研究趋势进行了展望,指出提高电催化氧化效率不仅需改进电极材料,还需改善反应器构型及与其他工艺的耦合等,以实现电催化氧化技术的推广应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵媛媛
王德军
赵朝成
关键词:  电催化氧化  阳极  粒子电极  难降解废水    
Abstract: With the rapid development of petrochemical, pharmaceutical and other industries, the refractory pollutants in industrial wastewater is increasing constantly. Unfortunately, conventional water treatment can no longer achieve satisfactory performance. The emerging technology of electro-catalytic oxidation mainly utilize hydroxyl radicals to degrade pollutant, showing the advantages of strong oxidation ability, no need to add chemical agents, no secondary pollution, simple operation of electro-catalytic oxidation process, and mild treatment condition, which exhibits great potential in treatment of refractory wastewater. Anode plays a dominant role in electro-catalytic oxidation technology, accordingly, anode materials have become the focus of research in this area. Generally, anode materials are required to have high oxygen evolution potential, high electro-catalytic activity, corrosion resistance, favorable stability and low price. Currently, the commonly used anode materials are Ti-based mental oxide anode and boron doped diamond. Whereas, these materials suffer from short service life and high production cost. Fortunately, the above problems can be avoided by preparing composite metal oxide anode through modification. Common modification methods include doping mental ion, introducing interlayer, doping nanoparticle, controlling the micromorphology of electrode materials. The modification contributes to improving the electro-catalytic activity, conductivity, stability of anode materials, increasing the reaction area of the electrode and prolong the electrode life. As a result, the preparation of composite metal oxide anode has been pay more attention in anode materials research.
A three-dimensional electrode system can be constructed by introducing a particle electrode on the basis of two-dimensional electrode system. Because particle electrode is polarized in electric field to form a micro-electrolytic cell, thus increase the effective reaction area, the three-dimensional electrode system presents larger surface ratio, higher electro-catalytic efficiency and lower energy consumption compared two-dimensional electrode system. Therefore, the development of high catalytic activity and high stability particle electrode has become a new research direction in the field of electro-catalytic oxidation. At present, The widely used particle electrodes include carbon materials (activated carbon, carbon aerogels, etc.), metal oxides (Al2O3, Fe3O4, etc.), ceramics and minerals.
Based on the mechanism of electro-catalytic oxidation and the working principle of three dimensional electrodes, the electrode materials widely applied in electro-catalytic oxidation treatment of wastewater, including titanium based metal oxide anodes, and thin layer boron doped diamond electrodes are reviewed in this paper. The particle electrode used in the three-dimensional electrode system is emphatically introduced. Finally, the challenges and possible improvement of electrode material for their future application are proposed. It is worth mentioning that improving efficiency of electro-catalytic oxidation technology requires not only the improvement of electrode materials but also the optimization of reactor configuration, coupling with other technologies, thereby achieving extensive application of electro-catalytic oxidation technology.
Key words:  electro-catalytic oxidation    anode    particle electrode    refractory wastewater
               出版日期:  2019-04-10      发布日期:  2019-04-10
ZTFLH:  TB331  
基金资助: 国家科技重大专项项目(2016ZX05040003)
通讯作者:  zhaochch@upc.edu.cn   
作者简介:  赵媛媛,2016年6月毕业于中国石油大学(华东),获得工学学士学位。现为中国石油大学(华东)化学工程学院硕士研究生,由赵朝成教授指导。研究方向为电催化氧化降解废水。赵朝成,中国石油大学(华东)化学工程学院教授、博士研究生导师,山东省环境科学学会理事,东营市环境科学学会副理事长,青岛市环境科学学会常务理事,中国环境科学学会石油专业委员会委员,中国石油学会会员,《油气田环境保护》杂志编委,国家科技部863专家库专家,国家清洁生产审核专家库专家,国家环保局评审专家库专家。长期从事石化企业三废治理与资源化的研究,承担完成省部级以上科研项目20余项,发表论文180余篇,获授权专利20余项,曾获高等学校科学研究优秀成果奖(科学技术)技术发明二等奖、中国石化联合会科技进步三等奖等10余项奖励。
引用本文:    
赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
ZHAO Yuanyuan, WANG Dejun, ZHAO Chaocheng. Progress in Electrode materials for Refractory Wastewater Treatment by Electro-catalytic Oxidation. Materials Reports, 2019, 33(7): 1125-1132.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17120274  或          http://www.mater-rep.com/CN/Y2019/V33/I7/1125
1 Zhang H, Li Y, Wu X, et al.Waste management, 2010, 30(11), 2096.
2 Wu X, Yang X, Wu D, et al.Chemical Engineering Journal, 2008, 138(1-3), 47.
3 He W, ma Q, Wang J, et al.Applied Clay Science, 2014, 99, 178.
4 Xu L, Li m, Xu W.Electrochimica Acta, 2015, 166, 64.
5 Neti N R, misra R.Chemical Engineering Journal, 2012, 184, 23.
6 Duan X, Ren F, Chang L.RSC Advances, 2016, 6(108), 106387.
7 Sun Z, Zhang H, Wei X, et al.Journal of Solid State Electrochemistry, 2015, 19(8), 2445.
8 Chen Z, Zhang Y, Zhou L, et al.Journal of Hazardous materials, 2017, 332, 70.
9 Sun Y, Li P, Zheng H, et al.Chemical Engineering Journal, 2017, 308, 1233.
10 Xiao m, Zhang Y.Chemosphere, 2016, 152, 17.
11 Wang Y, Liu S, Li R, et al.Journal of Environmental Sciences (China), 2016, 43, 54.
12 Wei L, Guo S, Yan G, et al.Electrochimica Acta, 2010, 55(28), 8615.
13 Yan L, ma H, Wang B, et al.Desalination, 2011, 276(1-3), 397.
14 Wu W, Huang Z H, Lim T T.Applied Catalysis A: General, 2014, 480, 58.
15 Xu H, Li A P, Qi Q, et al.Korean Journal of Chemical Engineering, 2012, 29(9), 1178.
16 Zheng Y, Su W, Chen S, et al.Chemical Engineering Journal, 2011, 174(1), 304.
17 Lv J, Feng Y, Liu J, et al.Applied Surface Science, 2013, 283, 900.
18 He Y, Huang W, Chen R, et al.Separation and Purification Technology, 2015, 156, 124.
19 Bai H, He P, Pan J, et al.Journal of Colloid and Interface Science, 2017, 497, 422.
20 Li m, Zhao F, Sillanpää m, et al.Separation and Purification Technology, 2015, 156, 588.
21 Jung K W, Hwang m J, Park D S, et al.Separation and Purification Technology, 2015, 146, 154.
22 marco Panizza, Cerisola G.Chemical Reviews, 2009, 109(12), 6541.
23 Song X, Yang H, Liang Z.Journal of Electrochemistry, 2013, 19(4), 313(in Chinese).
宋秀丽, 杨慧明, 梁镇海. 电化学, 2013, 19(4), 313.
24 Yang B, Wang J, Jiang C, et al.Chemical Engineering Journal, 2017, 316, 296.
25 Xu Z, Yu Y, Liu H, et al.Science of the Total Environment, 2017, 579, 1600.
26 Li L, Huang Z, Fan X, et al.Electrochimica Acta, 2017, 231, 354.
27 Zhang Q, Guo X, Cao X, et al.Chinese Journal of Catalysis, 2015, 36(7), 975.
28 Wu W, Huang Z, Hu Z, et al.Separation and Purification Technology, 2017, 179, 25.
29 Xu Z, Liu H, Niu J, et al.Journal of Hazardous materials, 2017, 327, 144.
30 Xu L, Liang G, Yin m.Chemosphere, 2017, 173, 425.
31 Wang Q, Jin T, Hu Z, et al.Separation and Purification Technology, 2013, 102, 180.
32 Li X, Li X, Yang W, et al.Electrochimica Acta, 2014, 146, 15.
33 Patel P S, Bandre N, Saraf A, et al.Procedia Engineering, 2013, 51, 430.
34 Gurung K, Ncibi m C, Shestakova m, et al.Applied Catalysis B: Environmental, 2018, 221, 329.
35 Wang H, Wang J.Applied Catalysis B: Environmental, 2007, 77(1-2), 58.
36 Lin H, Niu J, Ding S, et al.Water Research, 2012, 46(7), 2281.
37 Chaiyont R, Badoe C, Ponce de León C, et al.Chemical Engineering & Technology, 2013, 36(1), 123.
38 Berenguer R, Sieben J m, Quijada C, et al.Applied Catalysis B: Environmental, 2016, 199, 394.
39 Song S, Fan J, He Z, et al.Electrochimica Acta, 2010, 55(11), 3606.
40 Zhuo Q, Xiang Q, Yi H, et al.Journal of Electroanalytical Chemistry, 2017, 801, 235.
41 Zhao J, Zhu C, Lu J, et al.Electrochimica Acta, 2014, 118, 169.
42 Liu Y, Liu H, ma J, et al.Electrochimica Acta, 2011, 56(3), 1352.
43 Backhurst J R, Coulson J m, Goodridge F, et al.Journal of the ElectroChemical Society, 1969, 116(11), 1600.
44 Brown C J, Pletcher D.Journal of Applied Electrochemistry, 1994, 24, 95.
45 Comninellis C, Pulgarin C. Journal of Applied Electrochemistry, 1993, 23, 108.
46 Szpyrkowicz L, Naumczyk J, Zilio-Grandi F.Water Research, 1995, 29(2), 517.
47 Xu L, Zhao H, Shi S, et al.Dyes and Pigments, 2008, 77(1), 158.
48 Zhao H, Sun Y, Xu L, et al.Chemosphere, 2010, 78(1), 46.
49 Zhang C, Jiang Y, Li Y, et al.Chemical Engineering Journal, 2013, 228, 455.
50 Ya X, Chun H, Hans T K, et al.Chemosphere, 2003, 50, 131.
51 Gedam N, Neti N R.Journal of Environmental Chemical Engineering, 2014, 2(3), 1527.
52 Kang Z, Li H, Xu Y, et al.Desalination and Water Treatment, 2013, 51(13-15), 2687.
53 Li X, Zhu W, Wang C, et al.Chemical Engineering Journal, 2013, 232, 495.
54 Zhou m, Lei L.Chemosphere, 2006, 65(7), 1197.
55 Qiao Q C. Preparation, characterization of novel electrode materials for packed-bed electrode reactor and the electro-catalytic degradation of acid orange II. Ph.D. Thesis, China University of mining & Technology, China, 2014 (in Chinese).
乔启成. 新型填充床电化学反应器电极材料制备、表征及对酸性橙II的催化氧化性能研究. 博士学位论文, 中国矿业大学, 2014.
56 Can W, Yao K H, Qing Z, et al.Chemical Engineering Journal, 2014, 243, 1.
57 Wang L, Zhao Y, Duan C, et al.Procedia Engineering, 2015, 102, 249.
58 Cao G, Xu F, Xia S.Journal of the Brazilian Chemical Society, 2013, 24(12), 2050.
59 moreno Castilla C, maldonado Hódar F J.Carbon, 2005, 43(3), 455.
60 Lv G, Wu D, Fu R.Journal of Hazardous materials, 2009, 165(1-3), 961.
61 Chen F, Yu S, Dong X, et al.Journal of Hazardous materials, 2013, 260, 747.
62 Wang Y, Hu B, Hu C, et al.materials Science in Semiconductor Processing, 2015, 40, 744.
63 Qin Y, Sun m, Liu H, et al.Electrochimica Acta, 2015, 186, 328.
64 Wei J, Zhang S, Hu Q, et al.Chinese Journal of Environmental Engineering, 2015, 9(4), 1715(in Chinese).
魏金枝, 张少平, 胡琴, 等. 环境工程学报, 2015, 9(4), 1715.
65 Chen Y, Shi W, Xue H, et al.Electrochimica Acta, 2011, 58, 383.
66 Kong W, Wang B, ma H, et al.Journal of Hazardous materials, 2006, 137(3), 1532.
67 Liu W, Ai Z, Zhang L.Journal of Hazardous materials, 2012, 243, 257.
68 Wang Z, Qi J, Feng Y, et al.Catalysis Communications, 2014, 46, 165.
[1] 钟晓聪, 陈芳会, 王瑞祥, 徐志峰. 硫酸体系铅基阳极稳定性研究进展[J]. 材料导报, 2019, 33(17): 2862-2867.
[2] 闫静,田晓,赵宣,赵丽娟,杨艳春,陈均. 储氢合金作为直接硼氢化物燃料电池阳极催化剂的研究进展[J]. 材料导报, 2019, 33(13): 2229-2236.
[3] 吴晓燕, 谭维, 罗才武, 张晓文, 李密, 房琦, 谭文发. 以MnFe2O4为阻挡层的Ni-YSZ阳极支撑SOFC的效能[J]. 材料导报, 2019, 33(12): 1949-1954.
[4] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[5] 魏金枝,王雪亮,孙晓君,张凤鸣. 绿色电化学法合成金属有机骨架材料的研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1435-1441.
[6] 张贺贺, 李芳芳, 王海燕, 彭志光, 唐有根. 基于Fe/Co-MOF制备的高性能镍铁电池铁电极及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(5): 719-724.
[7] 吴亚丹, 胡圳, 赵丽, 王世敏, 董兵海, 王二静, 郭海永. 上转换发光材料La(OH)3∶Er3+/Yb3+的制备及在染料敏化太阳能电池中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 708-714.
[8] 谭丰, 徐洋洋, 李卫, 徐明丽, 闵春刚, 史庆南, 刘锋, 杨喜昆. 在硫基功能化碳纳米管上组装壳层厚度可控的Au@Pt核壳纳米粒子以获得高的甲醇电催化氧化活性[J]. 材料导报, 2018, 32(23): 4041-4046.
[9] 刘兆文, 李毅波, 黄明辉, 汪必升, 李剑. 阳极氧化处理增强Al-Li合金胶接板剪切强度的机理[J]. 材料导报, 2018, 32(18): 3181-3184.
[10] 张显峰, 赵朝成, 王德军, 赵媛媛, 张勇, 郭锐. 基于SnO2/Fe3O4粒子电极的三维电极体系的电催化性能*[J]. 《材料导报》期刊社, 2017, 31(8): 25-30.
[11] 郭晓亮, 周生刚, 张能锦, 竺培显, 曹勇, 李洪山. 等离子喷涂法制备Al/TiB2复合电极及电化学性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 21-24.
[12] 陈晓萍, 马俊, 李宝华, 康飞宇. 三维结构磷酸铁锂纳米线阵列的制备及其电化学性能[J]. 《材料导报》期刊社, 2017, 31(4): 1-4.
[13] 杨小洁, 董兵海, 陈凤翔, 万丽, 赵丽, 王世敏. 一维二氧化钛光阳极的制备及在染料敏化太阳能电池中的应用综述*[J]. 《材料导报》期刊社, 2017, 31(17): 138-145.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed