Please wait a minute...
材料导报  2018, Vol. 32 Issue (23): 4107-4115    https://doi.org/10.11896/j.issn.1005-023X.2018.23.012
  无机非金属及其复合材料 |
化学吸附储热技术的研究现状及进展
闫霆1, 2, 王文欢1, 王如竹2
1 上海电力学院能源与机械工程学院,上海 200090;
2 上海交通大学机械与动力工程学院,上海 200240
Present Status and Progress of Research on Chemical Adsorption Heat Storage
YAN Ting1, 2, WANG Wenhuan1, WANG Ruzhu2
1 College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090;
2 School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240
下载:  全 文 ( PDF ) ( 2130KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 化学吸附储热技术具有储热密度高、长时间储热几乎无热损失且可以实现冷热的复合储存等优点,在太阳能等可再生能源的有效利用和中低温余热/废热的回收利用中具有良好的应用前景,已成为国内外的研究热点。本文针对无机盐与水蒸气的水合反应和金属氯化物等与氨气的络合反应两类化学吸附储热方式进行了系统综述,归纳和总结了化学吸附储热技术的研究现状以及最新进展。对化学吸附储热材料进行了概括,并且对典型的化学反应器以及吸附储热装置进行了回顾。基于研究现状的分析,阐述了化学吸附储热当前研究中存在的问题,并进一步指出了该技术未来需要克服的问题和研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫霆
王文欢
王如竹
关键词:  吸附  储热技术  太阳能  可再生能源  回收  化学反应器    
Abstract: Chemical adsorption heat storage technique has the advantages of high heat storage density, almost no heat loss during long-term heat storage, and can realize combined cold and heat storage etc. It is a promising thermal energy storage technology which can be used for renewable energy effective utilization such as solar energy and the recovery of middle-low temperature surplus heat and waste heat. This heat storage technology has good application prospect and therefore gradually become a research hotspot at home and abroad. In this paper, the salt hydrate-based and ammonia-complexation adsorption of two kinds of chemical adsorption heat storage ways are comprehensively reviewed. It presents the research status and the latest progress on chemical adsorption heat storage technology. The heat storage materials used for the chemical adsorption heat storage have been summarized. Special attentions are paid on the characteristic of typical adsorption reactors and the heat storage performance of various chemical adsorption heat sto-rage devices. Based on the analysis of the present status and progress of research, the problems existing in the current investigation on the chemical adsorption heat storage technology have been expounded. Furthermore, the future research directions are pointed out.
Key words:  adsorption    heat storage technique    solar energy    renewable energy    recovery    chemical reactor
               出版日期:  2018-12-10      发布日期:  2018-12-20
ZTFLH:  TK172  
基金资助: 国家自然科学基金(51521004); 上海高校青年教师培养资助计划
作者简介:  闫霆:男,1981年生,博士研究生,讲师,主要从事热化学储能的研究 E-mail:yt81725@126.com;王如竹:通信作者,1964年生,男,教授,博士研究生导师,主要从事建筑节能及低品位热能的回收利用 E-mail:rzwang@sjtu.edu.cn
引用本文:    
闫霆, 王文欢, 王如竹. 化学吸附储热技术的研究现状及进展[J]. 材料导报, 2018, 32(23): 4107-4115.
YAN Ting, WANG Wenhuan, WANG Ruzhu. Present Status and Progress of Research on Chemical Adsorption Heat Storage. Materials Reports, 2018, 32(23): 4107-4115.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.23.012  或          http://www.mater-rep.com/CN/Y2018/V32/I23/4107
1 Yu N, Wang R Z, Wang L W.Sorption thermal storage for solar energy[J].Progress in Energy and Combustion Science,2013,39(5):489.
2 Iammak K, Wongsuwan W, Kiatsiriroj T.Investigation of modular chemical energy storage performance[C]∥The Joint International Conference on “Sustainable Energy and Environment (SEE)”. Hua Hin,2004:504.
3 Boer Rd, Haije W G, Veldhuis J B J, et al. Solid-sorption cooling with integrated thermal storage: The SWEAT prototype[C]∥3rd International Heat Powered Cycles Conference. Larnaca,2004.
4 Hou Y, Vidu R, Stroeve P.Solar energy storage methods[J].Industrial & Engineering Chemistry Research,2011,50(15):8954.
5 van Essen V M, Gores J C, Bleijendaal L P J, et al. Characterization of salt hydrates for compact seasonal thermochemical storage[C]∥ASME 2009 3rd International Conference on Energy Sustainability. San Francisco,2009:825.
6 van Essen V M, Zondag H A, Gores J C, et al. Characterization of MgSO4 hydrate for thermochemical seasonal heat storage[J].Journal of Solar Energy Engineering,2009,131(4):041014.
7 Posern K, Kaps C.Calorimetric studies of thermochemical heat sto-rage materials based on mixtures of MgSO4 and MgCl2[J].Thermochimica Acta,2010,502(1-2):73.
8 Zondag H A, Essen V M V, Schuitema R, et al. Engineering assessment of reactor designs for thermochemical storage of solar heat[C]∥Effstock Conference 2009-Thermal Energy Storage for Energy Efficiency and Sustainability. Stockholm,2009.
9 Posern K, Kaps C.Humidity controlled calorimetric investigation of the hydration of MgSO4 hydrates[J].Journal of Thermal Analysis and Calorimetry,2008,92(3):905.
10 Bertsch F, Mette B, Asenbeck S, et al.Low temperature chemical heat storage-an investigation of hydration reactions[C]∥Effstock Conference 2009-Thermal Energy Storage for Energy Efficiency and Sustainability. Stockholm,2009.
11 Zondag H A, Kalbasenka A, Essen M V, et al.First studies in reactor concepts for thermochemical storage[C]∥International Confe-rence on Solar Heating, Cooling and Buildings. Lisbon,2008.
12 Zondag H A, Kikkert B, Smeding S, et al.Thermochemical seasonal solar heat storage with MgCl2·6H2O: First upscaling of the reactor[C]∥International Conference for Sustainable Energy Storage. Belfast,2011.
13 Zondag H, Kikkert B, Smeding S, et al.Prototype thermochemical heat storage with open reactor system[J].Applied Energy,2013,109:360.
14 Fopah-Lele A, Kuznik F, Osterland T, et al.Thermal synthesis of a thermochemical heat storage with heat exchanger optimization[J].Applied Thermal Engineering,2016,101:669.
15 Tokarev M, Gordeeva L, Romannikov V, et al.New composite sorbent CaCl2 in mesopores for sorption cooling/heating[J].Internatio-nal Journal of Thermal Sciences,2002,41(5):470.
16 Barreneche C, Fernández A I, Cabeza L F, et al.Thermophysical characterization and thermal cycling stability of two TCM: CaCl2 and zeolite[J].Applied Energy,2015,137:726.
17 Fopah Lele A, Kuznik F, Rammelberg H U, et al.Thermal decomposition kinetic of salt hydrates for heat storage systems[J].Applied Energy,2015,154:447.
18 Lahmidi H, Mauran S, Goetz V.Definition, test and simulation of a thermochemical storage process adapted to solar thermal systems[J].Solar Energy,2006,80(7):883.
19 Mauran S, Lahmidi H, Goetz V.Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60 kWh by a solid/gas reaction[J].Solar Energy,2008,82(7):623.
20 Michel B, Mazet N, Mauran S, et al.Thermochemical process for seasonal storage of solar energy: Characterization and modeling of a high density reactive bed[J].Energy,2012,47(1):553.
21 Esaki T, Kobayashi N.Reaction rate characteristics of SrBr2 hydration system for chemical heat pump cooling mode[J].Journal of Materials Science and Chemical Engineering,2016,4(2):106.
22 Fopah-Lele A, Tamba J G.A review on the use of SrBr2·6H2O as a potential material for low temperature energy storage systems and building applications[J].Solar Energy Materials and Solar Cells,2017,164:175.
23 Levitskij E A, Aristov Y I, Tokarev M M, et al.“Chemical heat accumulators”: A new approach to accumulating low potential heat[J].Solar Energy Materials and Solar Cells,1996,44(3):219.
24 Aristov Y I, Tokarev M M, Cacciola G, et al.Selective water sorbents for multiple applications, 1. CaCl2 confined in mesopores of silica gel: Sorption properties[J].Reaction Kinetics and Catalysis Letters,1996,59(2):325.
25 Aristov Y I, Tokarev M M, Restuccia G, et al.Selective water sorbents for multiple applications, 2. CaCl2 confined in micropores of silica gel: Sorption properties[J].Reaction Kinetics and Catalysis Letters,1996,59(2):335.
26 Aristov Y I, Di Marco G, Tokarev M M, et al.Selective water sorbents for multiple applications, 3. CaCl2 solution confined in micro-and mesoporous silica gels: Pore size effect on the “solidification-melting” diagram[J].Reaction Kinetics and Catalysis Letters,1997,61(1):147.
27 Tokarev M M, Aristov Y I.Selective water sorbents for multiple applications, 4. CaCl2 confined in silica gel pores: Sorption/desorption kinetics[J].Reaction Kinetics and Catalysis Letters,1997,62(1):143.
28 Gordeeva L G, Restuccia G, Cacciola G, et al.Selective water sorbents for multiple applications, 5. LiBr confined in mesopores of silica gel: Sorption properties[J].Reaction Kinetics and Catalysis Letters,1998,63(1):81.
29 Aristov Y I, Restuccia G, Tokarev M M, et al.selective water sorbents for multiple applications, 10. energy storage ability[J].Reaction Kinetics and Catalysis Letters,2000,69(2):345.
30 Aristov Y I, Restuccia G, Tokarev M M, et al.Selective water sorbents for multiple applications. 11. CaCl2 confined to expanded vermiculite[J].Reaction Kinetics and Catalysis Letters,2000,71(2):377.
31 Aristov Y I, Restuccia G, Cacciola G, et al.A family of new wor-king materials for solid sorption air conditioning systems[J].Applied Thermal Engineering,2002,22(2):191.
32 N’Tsoukpoe K E, Schmidt T, Rammelberg H U, et al. A systema-tic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage[J].Applied Energy,2014,124:1.
33 de Boer R, Haije WG, Veldhuis JBJ. Determination of structural, thermodynamic and phase properties in the Na2S-H2O system for application in a chemical heat pump[J].Thermochimica Acta,2002,395(1-2):3.
34 Ucar M, Pounder B.Heat-of-adsorption solar thermal energy storage[J].Journal of Building Physics,1982,6(1):48.
35 Bales C, Gantenbein P, Jaenig D, et al.Final report of Subtask B “Chemical and Sorption Storage” the overview: Report of IEA solar heating and cooling programme-Task 32 advanced storage concepts for solar and low energy buildings[R].International Energy Agency,2008.
36 van Essen V M, Bakker M, Schuitema R, et al. Materials for thermochemical storage: characterization of magnesium sulfate[C]∥International Conference on Solar Heating, Cooling and Buildings. Lisbon,2008.
37 Steiger M, Linnow K, Juling H, et al.Hydration of MgSO4·H2O and generation of stress in porous materials[J].Crystal Growth & Design,2008,8(1):336.
38 Hongois S, Kuznik F, Stevens P, et al.Development and characterisation of a new MgSO4-zeolite composite for long-term thermal energy storage[J].Solar Energy Materials and Solar Cells,2011,95(7):1831.
39 Pathak A D, Nedea S, van Duin A C T, et al. Reactive force field development for magnesium chloride hydrates and its application for seasonal heat storage[J].Physical Chemistry Chemical Physics,2016,18(23):15838.
40 Whiting G T, Grondin D, Stosic D, et al.Zeolite-MgCl2 composites as potential long-term heat storage materials: Influence of zeolite properties on heats of water sorption[J].Solar Energy Materials and Solar Cells,2014,128:289.
41 Molenda M, Stengler J, Linder M, et al.Reversible hydration behavior of CaCl2 at high H2O partial pressures for thermochemical energy storage[J].Thermochimica Acta,2013,560:76.
42 Richter M, Bouché M, Linder M.Heat transformation based on CaCl2/H2O-Part A: Closed operation principle[J].Applied Thermal Engineering,2016,102:615.
43 Bouché M, Richter M, Linder M.Heat transformation based on CaCl2/H2O-Part B: Open operation principle[J].Applied Thermal Engineering,2016,102:641.
44 Zhu D, Wu H, Wang S.Experimental study on composite silica gel supported CaCl2 sorbent for low grade heat storage[J].International Journal of Thermal Sciences,2006,45(8):804.
45 Wu H, Wang S, Zhu D.Effects of impregnating variables on dyna-mic sorption characteristics and storage properties of composite sorbent for solar heat storage[J].Solar Energy,2007,81(7):864.
46 Liu H, Nagano K, Sugiyama D, et al.Honeycomb filters made from mesoporous composite material for an open sorption thermal energy storage system to store low-temperature industrial waste heat[J].International Journal of Heat and Mass Transfer,2013,65:471.
47 Aydin D, Casey S P, Chen X, et al.Novel “open-sorption pipe” reactor for solar thermal energy storage[J].Energy Conversion and Management,2016,121:321.
48 Zhang Y N, Wang R Z, Zhao Y J, et al.Development and thermochemical characterizations of vermiculite/SrBr2 composite sorbents for low-temperature heat storage[J].Energy,2016,115:120.
49 Zhao Y J, Wang R Z, Zhang Y N, et al.Development of SrBr2 composite sorbents for a sorption thermal energy storage system to store low-temperature heat[J].Energy,2016,115:129.
50 Fopah Lele A, Kuznik F, Opel O, et al.Performance analysis of a thermochemical based heat storage as an addition to cogeneration systems[J].Energy Conversion and Management,2015,106:1327.
51 Fopah-Lele A, Rohde C, Neumann K, et al.Lab-scale experiment of a closed thermochemical heat storage system including honeycomb heat exchanger[J].Energy,2016,114:225.
52 Michel B, Neveu P, Mazet N.Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications[J].Energy,2014,72:702.
53 Michel B, Mazet N, Neveu P.Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: Global performance[J].Applied Energy,2014,129:177.
54 Michel B, Mazet N, Neveu P.Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solar energy: Local reactive bed evolution[J].Applied Energy,2016,180:234.
55 Zhang Y N, Wang R Z, Li T X, et al.Thermochemical characterizations of novel vermiculite-LiCl composite sorbents for low-temperature heat storage[J].Energies,2016,9(10):854.
56 Yu N, Wang R Z, Lu Z S, et al.Development and characterization of silica gel-LiCl composite sorbents for thermal energy storage[J].Chemical Engineering Science,2014,111:73.
57 Yu N, Wang R Z, Lu Z S, et al.Study on consolidated composite sorbents impregnated with LiCl for thermal energy storage[J].International Journal of Heat and Mass Transfer,2015,84:660.
58 Yu N.Theoretical and experimental study of a three-phase sorption cycle for thermal energy storage [D]. Shanghai: Shanghai Jiao Tong University,2015(in Chinese).
余楠. 三相吸附储热循环的原理及实验验证[D].上海:上海交通大学,2015.
59 Yu N, Wang R Z, Wang L W.Theoretical and experimental investigation of a closed sorption thermal storage prototype using LiCl/water[J].Energy,2015,93:1523.
60 Zhao Y J, Wang R Z, Li T X, et al.Investigation of a 10 kWh sorption heat storage device for effective utilization of low-grade thermal energy[J].Energy,2016,113:739.
61 Mbaye M, Aidoun Z, Valkov V, et al.Analysis of chemical heat pumps (CHPs): Basic concepts and numerical model description[J].Applied Thermal Engineering,1998,18(3):131.
62 Spinner B.Ammonia-based thermochemical transformers[J].Heat Recovery Systems and CHP,1993,13(4):301.
63 Goetz V, Elie F, Spinner B.The structure and performance of single effect solid-gas chemical heat pumps[J].Heat Recovery Systems and CHP,1993,13(1):79.
64 Wentworth W E, Johnston D W, Raldow W M.Chemical heat pumps using a dispersion of a metal salt ammoniate in an inert solvent[J].Solar Energy,1981,26(2):141.
65 Lu H B, Mazet N, Spinner B.Modelling of gas-solid reaction—Coupling of heat and mass transfer with chemical reaction[J].Chemical Engineering Science,1996,51(15):3829.
66 Neveu P, Castaing J.Solid-gas chemical heat pumps: Field of application and performance of the internal heat of reaction recovery process[J].Heat Recovery Systems and CHP,1993,13(3):233.
67 Lepinasse E, Goetz V, Crosat G.Modelling and experimental investigation of a new type of thermochemical transformer based on the coupling of two solid-gas reactions[J].Chemical Engineering and Processing: Process Intensification,1994,33(3):125.
68 Goetz V, Marty A.A model for reversible solid-gas reactions submitted to temperature and pressure constraints: simulation of the rate of reaction in solid-gas reactor used as chemical heat pump[J].Chemical Engineering Science,1992,47(17):4445.
69 Huang H J, Wu G B, Yang J, et al.Modeling of gas-solid chemisorption in chemical heat pumps[J].Separation and Purification Technology,2004,34(1-3):191.
70 Han J H, Lee K H, Kim H.Effective thermal conductivity of grap-hite-metallic salt complex for chemical heat pumps[J].Journal of Thermophysics and Heat Transfer,1999,13(4):481.
71 Wang C, Zhang P, Wang R Z.Investigation of solid-gas reaction heat transformer system with the consideration of multistep reactions[J].AIChE Journal,2008,54(9):2464.
72 Trudel J, Hosatte S, Ternan M.Solid-gas equilibrium in chemical heat pumps: the NH3-CoCl2 system[J].Applied Thermal Enginee-ring,1999,19(5):495.
73 Li T X, Wang R Z, Yan T, et al.Integrated energy storage and energy upgrade, combined cooling and heating supply, and waste heat recovery with solid-gas thermochemical sorption heat transformer[J].International Journal of Heat and Mass Transfer,2014,76:237.
74 Li T X, Wang R Z, Kiplagat J K.A target-oriented solid-gas thermochemical sorption heat transformer for integrated energy storage and energy upgrade[J].AIChE Journal,2013,59(4):1334.
75 Li T X, Wang R Z, Kiplagat J K, et al.Performance analysis of an integrated energy storage and energy upgrade thermochemical solid-gas sorption system for seasonal storage of solar thermal energy[J].Energy,2013,50:454.
76 Li T X, Wang R Z, Yan T.Solid-gas thermochemical sorption thermal battery for solar cooling and heating energy storage and heat transformer[J].Energy,2015,84:745.
77 Li T X, Xu J X, Yan T, et al.Development of sorption thermal battery for low-grade waste heat recovery and combined cold and heat energy storage[J].Energy,2016,107:347.
78 Li T X, Wu S, Yan T, et al.A novel solid-gas thermochemical multilevel sorption thermal battery for cascaded solar thermal energy storage[J].Applied Energy,2016,161:1.
79 Yamamoto H, Sakamoto Y, Sanga S, et al.Performance of thermal energy storage unit using CaCl2-NH3 system mixed with Ti[J].The Canadian Journal of Chemical Engineering,1990,68(6):948.
80 Sakamoto Y, Yamamoto H.Performance of thermal energy storage unit using solid ammoniated salt (CaCl2-NH3 system)[J].Natural Resources,2014,5(8):337.
81 Sakamoto Y, Yamamoto H.Measurement of thermophysical property of energy storage system (CaCl2·NH3 system)[J].Natural Resources,2014,5(12):687.
82 Stitou D, Mazet N, Mauran S.Experimental investigation of a solid/gas thermochemical storage process for solar air-conditioning[J].Energy,2012,41(1):261.
83 Lépinasse E, Marion M, Goetz V.Cooling storage with a resorption process. Application to a box temperature control[J].Applied Thermal Engineering,2001,21(12):1251.
84 Bao H S, Wang R Z, Oliveira R G, et al.Resorption system for cold storage and long-distance refrigeration[J].Applied Energy,2012,93:479.
85 van Essen V M, Bleijendaal L P J, Kikkert B W J, et al. Development of a compact heat storage system based on salt hydrates[C]∥International Conference on Solar Heating, Cooling and Buildings.Graz,2010.
[1] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[2] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[3] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[4] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[5] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[6] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[7] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[8] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[9] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[10] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[11] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[12] 王朋, 肖迪, 梁妮, 周日宇, 张迪. 电荷辅助氢键的形成机制及环境效应研究进展[J]. 材料导报, 2019, 33(5): 812-818.
[13] 刘德坤, 刘航, 杨柳, 罗永明, 韩彩芸. 镧、铈改性介孔氧化铝对氟离子的吸附[J]. 材料导报, 2019, 33(4): 590-594.
[14] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[15] 王龙江, 李永国, 俞杰, 樊惠玲, 吴波, 韩丽红, 李彦樟, 乔太飞. 三维有序大孔铜基吸附剂的制备及除碘性能[J]. 材料导报, 2019, 33(4): 660-664.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed