Please wait a minute...
材料导报  2018, Vol. 32 Issue (17): 2986-2991    https://doi.org/10.11896/j.issn.1005-023X.2018.17.012
  无机非金属及其复合材料 |
石灰石粉和含铝相辅助性胶凝材料的协同作用对混凝土抗碳化性能的影响
王德辉1, 史才军2, 贾煌飞2
1 福州大学土木工程学院,福州 350116;
2 湖南大学土木工程学院,长沙 410082
Impact of Synergistic Effect Between Limestone Powder and Supplementary Cementitious Materials Containing Aluminate Phase on Carbonation Resistance of Concrete
WANG Dehui1, SHI Caijun2, JIA Huangfei2
1 College of Civil Engineering, Fuzhou University, Fuzhou 350116;
2 College of Civil Engineering, Hunan University, Changsha 410082
下载:  全 文 ( PDF ) ( 2030KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究石灰石粉和含铝相辅助性胶凝材料的协同作用对混凝土抗碳化性能的影响,选取了两种含铝相辅助性胶凝材料和石灰石粉以不同比例取代水泥,并采用差热分析、XRD和压汞法测试了其水化产物和微观结构。研究结果表明,单掺石灰石粉降低了混凝土的抗碳化性能,当石灰石粉掺量约为10%时,混凝土的碳化深度最低。当复掺石灰石粉和含铝相辅助性胶凝材料时,两者反应生成了碳铝酸钙,增大了固相体积,优化了孔结构,它们的协同作用提高了混凝土的抗碳化性能。当石灰石粉掺量为5%~15%,粉煤灰掺量小于10%,或者矿粉掺量为10%~30%时,混凝土的碳化深度最低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王德辉
史才军
贾煌飞
关键词:  石灰石粉  粉煤灰  矿粉  协同作用  抗碳化性能    
Abstract: To investigate the impact of synergistic effect between limestone powder and supplementary cementitious materials containing aluminate phase on carbonation resistance of concrete, two kinds of supplementary cementitious materials containing aluminate phase and limestone powder were selected to replace cement in different proportion, and the hydration products and microstructure were measured by thermogravimetric analysis, XRD and mercury intrusion porosimetry. The results showed that incorporation of limestone powder reduce the carbonation resistance of concrete. The carbonation depth of concrete was minimal when the content of limestone powder was approximately 10%. However, when limestone powder and supplementary cementitious materials containing aluminate phase were mixed, they reacted to form calcium carboaluminate, which increase the volume of solid phase, optimize the pore structure, and their synergistic effect improved the carbonation resistance of concrete. When the limestone powder amount was 5%—15%, and the fly ash amount was less than 10% or the slag amount was 10%—30%, the carbonation depth of concrete was lowest.
Key words:  limestone powder    fly ash    slag    synergistic effect    carbonation resistance
                    发布日期:  2018-09-19
ZTFLH:  TU528  
基金资助: 国家自然科学基金青年科学基金(51608187);博士后基金(2017M612551)
通讯作者:  史才军: 男,1963年生,博士,教授,研究方向为土木工程材料 E-mail:cshi@hnu.edu.cn   
作者简介:  王德辉:男,1983年生,博士,副研究员,研究方向为超高性能混凝土、石灰石粉 E-mail:dhwang2010@hotmail.com
引用本文:    
王德辉, 史才军, 贾煌飞. 石灰石粉和含铝相辅助性胶凝材料的协同作用对混凝土抗碳化性能的影响[J]. 材料导报, 2018, 32(17): 2986-2991.
WANG Dehui, SHI Caijun, JIA Huangfei. Impact of Synergistic Effect Between Limestone Powder and Supplementary Cementitious Materials Containing Aluminate Phase on Carbonation Resistance of Concrete. Materials Reports, 2018, 32(17): 2986-2991.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.17.012  或          http://www.mater-rep.com/CN/Y2018/V32/I17/2986
1 Wang D H, Shi C J, Farzadnia N, et al. A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures[J].Construction and Building Materials,2018,181:659.
2 Soroka I, Setter N. The effect of fillers on strength of cement mortars[J].Cement and Concrete Research,1977,7(4):449.
3 Soroka I, Setter N. Calcareous fillers and the compressive strength of Portland cement[J].Cement and Concrete Research,1976,6(3):367.
4 Schmidt M. Cement with interground additives-capabilities and environmental relief, Part 2[J].Zement-kalk-Gips,1992,45(6):296.
5 European Committee for Standardization. EN 197-1 (2000). “Cement-part 1”, composition, specifications and uniformity criteria for common cements[S].Brussels, Belgium,2000.
6 Canadian Standards Association. CSA A3001. Cementitious materials for use in concrete[S].Toronto, Ontario,2008.
7 Canadian Standards Association. CSA A3001. Cementitious materials for use in concrete[S].Toronto, Ontario,2010.
8 ASTM International. ASTM Standard C595. Standard specification for blended hydraulic cements[S].West Conshohocken,2012.
9 Celik K, Meral C, Gursel A P, et al. Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended Portland cements containing fly ash and limestone powder[J].Cement and Concrete Composites,2015,56(77):59.
10 Vance K, Aguayo M, Oey T, et al. Hydration and strength development in ternary portland cement blends containing limestone and fly ash or metakaolin[J].Cement and Concrete Composites,2013,39(5):93.
11 Das S,Aguayo M, Dey V, et al. The fracture response of blended formulations containing limestone powder: Evaluations using two-parameter fracture model and digital image correlation[J].Cement and Concrete Composites,2014,53(10):316.
12 De W K, Ben H M, Le S G, et al. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash[J].Cement and Concrete Research,2011,41(3):279.
13 Arora A, Sant G, Neithalath N. Ternary blends containing slag and interground/blended limestone: Hydration, strength, and pore structure[J].Construction and Building Materials,2016,102:113.
14 Taylor H F W. Cement chemistry. 2nd Ed[M].London: Academic Press,1990.
15 Moesgaard M, Herfort D, Steenberg M, et al. Physical perfor-mances of blended cements containing calcium aluminosilicate glass powder and limestone[J].Cement and Concrete Research,2011,41(3):359.
16 Aqel M, Panesar D K. Hydration kinetics and compressive strength of steam-cured cement pastes and mortars containing limestone filler[J].Construction and Building Materials,2016,113:359.
17 Martin C, Philippe, Erick R. Efficiency of mineral admixtures in mortars quantification of the physical and chemical effects of fine admixtures in relation with compressive strength[J].Cement and Concrete Research,2006,36(2):264.
18 Deschner F, Winnefeld F, Lothenbach B, et al. Hydration of Portland cement with high replacement by siliceous fly ash[J].Cement and Concrete Research,2012,42(10):1389.
19 Lothenbach B, Matschei T, Moschner G, et al. Thermodynamic modeling of the effect of temperature on the hydration and porosity of Portland cement[J].Cement and Concrete Research,2008,38:1.
[1] 王珩, 刘伟宝, 陆采荣, 梅国兴, 戈雪良, 杨虎. PL复合掺合料对骨料碱活性的抑制及孔溶液分析[J]. 材料导报, 2019, 33(z1): 214-218.
[2] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[3] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[4] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[5] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[6] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[7] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[8] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[9] 王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
[10] 苏英, 邱慧琼, 贺行洋, 杨进, 王迎斌, 曾三海, Bohumír Strnadel. 弱碱激发超细粉煤灰水化产物结构分析[J]. 材料导报, 2019, 33(14): 2376-2380.
[11] 谢 飞,王兴发,王 丹,孙东旭,戚建晶. 生物膜作用下管线钢应力腐蚀开裂行为研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1541-1548.
[12] 张翔, 甘春雷, 黎小辉, 张辉, 郑开宏, 农登. 氧化铝纤维含量对陶瓷基摩擦材料性能的影响[J]. 材料导报, 2018, 32(20): 3517-3523.
[13] 吴明, 郭紫薇, 谢飞, 王丹, 王义闯, 郭大成, 姜锦涛. 阴离子和硫酸盐还原菌作用下管线钢腐蚀行为的研究进展[J]. 材料导报, 2018, 32(19): 3435-3443.
[14] 马宏强, 易成, 朱红光, 董作超, 陈宏宇, 王佳欣, 李德毅. 煤矸石集料混凝土抗压强度及耐久性能[J]. 《材料导报》期刊社, 2018, 32(14): 2390-2395.
[15] 钱如胜,张云升,张宇,杨永敢. 水泥-粉煤灰体系早龄期液相离子浓度与电导率的关系[J]. 《材料导报》期刊社, 2018, 32(12): 2066-2071.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed