Please wait a minute...
材料导报  2018, Vol. 32 Issue (17): 2976-2985    https://doi.org/10.11896/j.issn.1005-023X.2018.17.011
  无机非金属及其复合材料 |
混凝土泵送性能的流变学表征及预测综述
元强1, 李白云1, 史才军2, 安晓鹏3, 黄海1
1 中南大学土木工程学院,高速铁路建造技术国家工程实验室,长沙 410075;
2 湖南大学土木工程学院,绿色先进土木工程材料及应用技术湖南省重点实验室,长沙 410082;
3 中国建筑材料研究总院,绿色建材国家重点实验室,北京 100024
An Overview on the Prediction and Rheological Characterization of Pumping Concrete
YUAN Qiang1, LI Baiyun1, SHI Caijun2, AN Xiaopeng3, HUANG Hai1
1 School of Civil Engineering, National Engineering Laboratory for Construction of High Speed Railway, Central South University, Changsha 410075;
2 Key Laboratory for Green and Advanced Civil Engineering Materials and Application Technologies of Hunan Province, College of Civil Engineering, Hunan University, Changsha 410082;
3 State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024
下载:  全 文 ( PDF ) ( 2558KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自1933年美国首次使用泵送的方式输运混凝土以来,泵送已成为现代混凝土施工的主要方式。随着建筑高度的不断攀升,混凝土泵送技术难度越来越高。虽然我国采用混凝土泵送技术建设了大量的钢筋混凝土(超)高层建筑,但混凝土的成功泵送是基于耗时、耗财的盘管试验结果,而现行技术规范中的经验公式与现场实测值也完全不符,这表明混凝土泵送性能的理论研究严重滞后于应用技术。随着精细化工程管理及混凝土质量控制要求的提高,粗放的经验性方法及耗财的盘管试验已不能适应行业发展的新趋势,因此,为混凝土的泵送行为提供科学的理论基础是土木行业亟需解决的问题。
   流变学理论是研究混凝土泵送性能的有效工具,国外的研究者从泵管中混凝土的流动行为、润滑层性能与表征、泵送性能预测等方面展开了较为系统的研究工作,取得了良好的成果,但国内在流变理论与泵送技术方面的研究成果极少。研究表明,屈服应力不同的混凝土在管道中表现出不同的流动形态。基于混凝土及润滑层的流变参数建立的模型可准确预测水平直线管道中混凝土的泵送压力。
   虽然普遍认为润滑层是影响混凝土泵送性能的重要因素,但混凝土润滑层流变参数的表征方法较多,包括滑管仪、摩擦仪和等效砂浆法,研究者还开发出了不同的摩擦仪和测试程序来表征混凝土润滑层的流变性能。基于混凝土及润滑层的流变性能,研究者建立了混凝土在泵管中流动的数学模型,解析出了泵送压力-混凝土流变性能-泵送速率间的关系,为准确预测混凝土的泵送行为提供了科学工具。但不同混凝土及润滑层流变参数的测试结果存在一定差异,哪种方法更能真实反映混凝土在泵管中的流动行为仍是一个问题;并且对于弯管、软管及垂直管道中混凝土的泵送行为也缺乏研究。亟需开展相关理论与技术研究,推动流变学理论在泵送混凝土方面的应用。
   本文从混凝土在泵管中的流动行为、润滑层性能与表征、泵送性能预测等方面综述了国内外关于泵送混凝土的最新研究成果,分析了各种方法及理论的优缺点,以期为流变理论在混凝土泵送技术中的应用与研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
元强
李白云
史才军
安晓鹏
黄海
关键词:  混凝土  泵送  流变    
Abstract: Since the first application of pumping concrete in the US in 1933, pumping has become the most important construction technology of concrete. With the continuously increasing height of building, concrete pumping has become more difficult. Although pumping technique has been used to build many high-rising buildings in China, successful pumping was based on the time-consuming and expensive large scale pumping test, and the empirical equations in the code or standard do not fit the measured data on job site. This indicates that theoretical research far lags behind the application of pumping concrete. Since fine management of engineering and high requirement of quality control of concrete has been required in most cases, extensive empirical method and expensive large scale test cannot adapt to the new development trend of the industry. Thus, it is necessary to provide theoretical foundation for concrete pumping technology.
   Rheological theory is an effective tool to study the pumping of concrete. Foreign researchers have carried out comprehensive researches on the flowing behavior of concrete in pumping pipe, characterization of lubrication layer, and prediction of pumping, and some good results has been obtained. However, there are very limited researches conducted in China. Results show that concretes with different yield stresses flow in pumping pipe in different patterns. The model based on the rheological parameters of concrete and lubrication layer can precisely predict concrete pumping pressure.
   It is generally believed that the lubrication layer is the most important factor affecting pumping, and many methods have been developed to characterize lubrication layer, including sliding pipe rheometer, tribometer, and equivalent mortar. Different tribometers and testing programs have also been developed. Based on the rheological parameters of concrete and lubrication layer, analytical numerical model for describing the flow of concrete in pipe has been developed, and the relationship among pumping pressure, rheological properties of concrete and pumping rate has been established. This provides theoretical bases for predicting the behavior of concrete pumping. However, different rheological characterization methods of lubrication layer give different results, and which method can reflect the real situation of concrete pumping is still an open question. In addition, concrete flows in bending pipe, vertical pipe and soft pipe are seldom studied. In order to predict concrete pumping in practice, it is necessary to develop appropriate rheological tools based on the characteristics of concrete in China and real engineering.
   The most up-to-date researches on the flowing behavior of concrete in pumping pipe, characterization of lubrication layer, and prediction of pumping are reviewed in this paper, and the advantages and disadvantages of different methods and theories are analyzed.
Key words:  concrete    pumping    rheology
                    发布日期:  2018-09-19
ZTFLH:  TU528.53  
基金资助: 十三五国家重点研发计划项目(2017YFB0310100);国家自然科学基金(51778629)
作者简介:  元强:男,1981年生,教授,主要从事水泥基材料的研究工作 E-mail:yuanqiang@csu.edu.cn
引用本文:    
元强, 李白云, 史才军, 安晓鹏, 黄海. 混凝土泵送性能的流变学表征及预测综述[J]. 材料导报, 2018, 32(17): 2976-2985.
YUAN Qiang, LI Baiyun, SHI Caijun, AN Xiaopeng, HUANG Hai. An Overview on the Prediction and Rheological Characterization of Pumping Concrete. Materials Reports, 2018, 32(17): 2976-2985.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.17.011  或          http://www.mater-rep.com/CN/Y2018/V32/I17/2976
1 Chetan H, Viswanath M. Single stage concrete pumping through 2.432 km (1.51 miles): Weather and ution challenges[J].Case Studies in Construction Materials,2015,3:56.
2 Wu X Z. Analyze the pumpability of concrete[J].Concrete World,2016(2):70(in Chinese).
吴兴祖.混凝土的可泵性分析[J].混凝土世界,2016(2):70.
3 Wu X Z. Study the pumpability of concrete[J].Concrete World,2016(2):79(in Chinese).
吴兴祖.混凝土的可泵性研究[J].混凝土世界,2016(2):79.
4 Von Eckardstein K E. Pumping, concrete and concrete pumps—A concrete placing manual[M].Schwing,US,1983.
5 ACI-Committee. Placing concrete by pumping methods[M].American Concrete Institute, US,1998.
6 Yu C X, Shi W K. Pumping technology of concrete for high rise building[J].Ready-Mixed Concrete,2011(10):29(in Chinese).
余成行,师卫科.泵送混凝土技术与超高泵送混凝土技术[J].商品混凝土,2011(10):29.
7 Deng T M, Zhang K F, Li Y F, et al. Preparation and application of C50 self-compacting concrete or high rise building[J].Construction Technology,2015(S1):465(in Chinese).
邓天明,张凯峰,李逸飞,等.C50超高层泵送自密实混凝土配制及其应用[J].施工技术,2015(S1):465.
8 Li L M, Chen X W, Zhang L, et al. Pumping technology of concrete for high rise building[J].Architecture Technology,2016,47(4):335(in Chinese).
李路明,陈喜旺,张莉,等.超高层建筑混凝土泵送施工工艺探讨[J].建筑技术,2016,47(4):335.
9 Larrard F D, Kaplan D. Design of concrete pumping circuit[J].ACI Materials Journal,2005,102(2):110.
10 Feys D, Khayat K H. Recent developments in evaluating pumping behavior of flowable and self-consolidating concretes[J].Journal of Sustainable Cement-Based Materials,2015,4(3-4):238.
11 Kaplan D. Pumping of concrete[D].Paris:Laboratoire Centrale des Ponts et Chaussées,2000.
12 Kaplan D, Sedran T, De Larrard F, et al. Forecasting pumping parameters[C]//The 2nd International Symposium on Self-Compacting Concrete. Tokyo,2001:555.
13 Chapdelaine F. Fundamental and practical study on pumping of concrete[D].French: Université de Laval, Québec Canada,2007.
14 Ngo T T. Influence of concrete composition on pumping parameters and validation of a prediction model for the viscous constant[D].Pa-ris: Université Cergy-Pontoise,2009.
15 Ngo T T, Kadri E H, Cussigh F,et al. Measurement and modeling of fresh concrete viscous constant to predict pumping pressures[J].Canadian Journal of Civil Engineering,2011,36(8):944.
16 Kwon S H, Park C K, Jeong J H, et al. Prediction of concrete pumping: Part Ⅱ—Analytical prediction and experimental verification[J].ACI Materials Journal,2013,110:657.
17 Kwon S H, Jang K P, Kim J H, et al. State of the art on prediction of concrete pumping[J].International Journal of Concrete Structures and Materials,2016,10(3):75.
18 Choi M S, Kim Y J, Kim J K. Prediction of concrete pumping using various rheological models[J].International Journal of Concrete Structures and Materials,2014,8(4):269.
19 Feys D. Interactions between rheological properties and pumping of self-compacting concrete[D].Ghent, Belgium: Ghent University,2009.
20 Browne R D, Bamforth P B. Tests to establish concrete pumpability[J].ACI Structural Journal,1977,74:193.
21 Ede A N. The resistance of concrete pumped through pipelines[J].Magazine of Concrete Research,1957,9(27):129.
22 De Larrard F, Ferraris C F, Sedran T. Fresh concrete: A Herschel-Bulkley material[J].Materials Structure,1998,31(7):494.
23 Feys D, Verhoeven R, Schutter G D. Extension of the poiseuille formula for shear-thickening materials and application to self-compacting concrete[J].Applied Rheology,2008,18:1.
24 Weber R. The transport of concrete by pipeline[M]. London: Cement and Concrete Association,1968.
25 Sakuta M, Yamane S, Kasami H, et al. Pumpability and rheological properties of fresh concrete[C]//Conference on Quality Control of Concrete Structures,1979:125.
26 Choi M S, Roussel N, Kim Y J, et al. Lubrication layer properties during concrete pumping[J].Cement and Concrete Research,2013,45(3):69.
27 Phillips R J, Armstrong R C, Brown R A, et al. A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration[J].Physics of Fluids,1992,4:30.
28 Jo S D, Park C K, Jeong J H, et al. A computational approach to estimating a lubricating layer in concrete pumping[J].Computers Materials and Continua,2012,27(3):189.
29 Koehler E P, Fowler D W, Ferraris C F, et al. A new portable rheometer for fresh self-consolidating concrete[J].ACI Special Publication,2006,233:97.
30 Ngo T T, Kadri E H, Bennacer R, et al. Use of tribometer to estimate interface friction and concrete boundary layer composition during the fluid concrete pumping[J].Construction and Building Materials,2010,24:1253.
31 Kwon S H, Park C K, Jeong J H, et al. Prediction of concrete pumping: Part Ⅰ—Development of new tribometer for analysis of lubricating layer[J].ACI Materials Journal,2013,110:647.
32 Feys D, Khayat K H, Perez-Schell A, et al. Development of a tribometer to characterize lubrication layer properties of self-consolidating concrete[J].Cement and Concrete Composites,2014,54:40.
33 Mechtcherine V, Nerella V N, Kasten K. Testing pumpability of concrete using sliding pipe rheometer[J].Construction and Building Materials,2014,53:312.
34 Choi M S, Kim Y J, Kwon S H. Numerical prediction on pipe flow of pumped concrete based on shear-induced particle migration[J].Cement and Concrete Research,2013,52:216.
35 Le H D, Kadri E H, Aggoun S, et al. Effect of lubrication layer on velocity profile of concrete in a pumping pipe[J].Materials and Structures,2015,48(12):3991.
36 Jacobsen S, Haugan L, Hammer T A, et al. Flow conditions of fresh mortar and concrete in different pipes[J].Cement and Concrete Research,2009,39:997.
37 Ngo T T, Kadri E H, Cussigh F, et al. Relationships between concrete composition and boundary layer composition to optimise concrete pumpability[J].European Journal of Environmental and Civil Engineering,2012,16(2):157.
38 JGJ/T混凝土泵送施工技术规程[S].北京:中国建筑工业出版社,2011.
39 Morinaga S. “Pumpability of concrete and pumping pressure in pipelines” fresh concrete: Important properties and their measurement[C]//Proceedings of a RILEM Seminar.Leeds,1973.
40 Wang D B. Study on rheology and pumping pressure loss of high performance concrete[D].Chongqing: Chongqing University,2015(in Chinese).
汪东波.高性能混凝土的流变性及泵送压力损失研究[D].重庆:重庆大学,2015.
41 Li L H, Chen X W, Li L M, et al. The distribution of pumping pressure of self-compacting concrete[J].Construction Technology,2016,45(12):52(in Chinese).
李立辉,陈喜旺,李路明,等.自密实混凝土泵送压力变化规律分析[J].施工技术,2016,45(12):52.
42 Lin J C, Wu X, Huang Y X, et al. Advances in evaluation method for pumping concrete of high-rising building[J].Concrete,2015(10):109(in Chinese).
林家超,吴雄,黄义雄,等.混凝土超高层泵送评价方法研究进展[J].混凝土,2015(10):109.
43 Feys D, Khayat K H, Khatib R. How do concrete rheology, tribology, flow rate and pipe radius influence pumping pressure[J].Cement and Concrete Composites,2015,66:38.
44 Tan Y, Zhang H, Yang D, et al. Numerical simulation of concrete pumping process and investigation of wear mechanism of the piping wall[J].Tribology International,2012,46(1):137.
45 Poiseuille J L M. Research on the movement of liquids in tubes of very small diameters[J].CR Academic Science,1840,11:961.
46 Buckingham E. On plastic flow through capillary tubes[J].Procee-dings of America Society Testing Material,1921,21:1154.
47 Choi M S, Kim Y J, Jang K P, et al. Effect of the coarse aggregate size on pipe flow of pumped concrete[J].Construction and Building Materials,2014,66(36):723.
48 Barnes H A. A handbook of elementary rheology[M].Wales:Institute of Non-Newtonian Fluid Mechanics, University of Wales,2000.
49 Erdogğan S T, Martys N S, Ferraris C F, et al. Influence of the shape and roughness of inclusions on the rheological properties of a cementitious suspension[J].Cement and Concrete Composites,2008,30(5):393.
50 Kaplan D, Larrard F D. Avoidance of blockages in concrete pumping process[J].ACI Materials Journal,2005,102(3):183.
51 Gray J. Laboratory procedure for comparing pumpability of concrete mixtures[C]//The 65th Annual Meeting of the Society, National Crushed Stone Association. Washington, D.C.,1962:964.
52 Zhang Y Q. Pumping pressure and pressure bleeding[J].Concrete and Cement Products,1995(5):26(in Chinese).
张晏清.砼的泵送压力与压力泌水[J].混凝土与水泥制品,1995(5):26.
53 Feys D. Understanding the pumping of conventional vibrated and self-compacting concrete[M]//Roussel N. Understanding the Rheology of Concrete. Woodhead Publishing,2011:331.
54 Feys D, Schutter G D, Verhoeven R. Parameters influencing pressure during pumping of self-compacting concrete[J].Materials and Structures,2013,46(4):533.
55 Feys D, Schutter G D, Khayat K H, et al. Changes in rheology of self-consolidating concrete induced by pumping[J].Materials and Structures,2016,49(11):4657.
56 National Ready Mixed Concrete Association. CIP 21—Loss of air content in pumped concrete[J/OL].http://www.nrmca.org/aboutconcrete/cips/21p.pdf.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 李地红, 夏娴, 王艳君, 张景卫, 许国栋. 镶嵌式混凝土构件加固、补强、修复技术研究[J]. 材料导报, 2019, 33(z1): 225-228.
[3] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[4] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[5] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[6] 李地红, 夏娴, 高群, 代函函, 于海洋. 镶嵌式加固混凝土构件加固区域力学行为的有限元分析[J]. 材料导报, 2019, 33(z1): 249-253.
[7] 黄艳玲, 元强, 刘耀强, 赵虎, 王跃跃, 左胜浩, 周大军, 孙泽川. 外加剂对半流动性自密实混凝土滑模施工性能的影响[J]. 材料导报, 2019, 33(z1): 254-260.
[8] 夏娴, 李地红, 高群, 代函函, 于海洋. 基于ABAQUS的镶嵌式混凝土加固、修复技术研究[J]. 材料导报, 2019, 33(z1): 269-273.
[9] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[10] 刘国军, 张生义, 钟明月, 张桂霞, 王艳, 余大平. BEM含量对MAA-EA-MMA共聚物乳液的pH响应性研究[J]. 材料导报, 2019, 33(8): 1422-1426.
[11] 李霖皓, 龙广成, 刘芳萍, 石晔, 马聪, 谢友均. 混凝土在蒸养过程中的变形性能[J]. 材料导报, 2019, 33(8): 1322-1327.
[12] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[13] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[14] 司雯, 曹明莉, 冯嘉琪. 纤维增强水泥基复合材料的流动性与流变性研究进展[J]. 材料导报, 2019, 33(5): 819-825.
[15] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed