Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 24-32    https://doi.org/10.11896/j.issn.1005-023X.2017.023.003
  专题栏目:超高性能混凝土及其工程应用 |
超高性能混凝土拉伸力学行为的研究进展*
刘建忠1, 2, 韩方玉1, 2, 周华新1, 2, 张丽辉1, 2, 刘加平2, 3
1 江苏苏博特新材料股份有限公司,南京 211103;
2 高性能土木工程材料国家重点实验室,南京 210008;
3 东南大学材料科学与工程学院,南京 211189
An Overview on Tensile Behavior of Ultra-high Performance Concrete
LIU Jianzhong1, 2, HAN Fangyu1, 2, ZHOU Huaxin1, 2, ZHANG Lihui1, 2, LIU Jiaping2, 3
1 Jiangsu Sobute New Materials Co. Ltd., Nanjing 211103;
2 State Key Laboratory of High Performance Civil Engineering Materials, Nanjing 210008;
3 School of Materials Science and Engineering, Southeast University, Nanjing 211189
下载:  全 文 ( PDF ) ( 2701KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超高性能混凝土(UHPC)是一种具有超高比强度、突出韧性和优异耐久性的水泥基材料,其韧性立足于高强基体和高强纤维之间的高效协同机制基础之上,往往通过拉伸力学行为加以表征。从试验方法、基体和纤维三个角度综述了UHPC拉伸力学行为的研究进展情况,指出UHPC拉伸力学行为宜采用狗骨头状试件进行测试,具有明显的尺寸效应且受加载速率影响;合理优化材料组成、尺寸和分布是提高UHPC拉伸性能的有效途径;纤维种类对UHPC拉伸性能的影响最为显著,提高纤维增强因子和调控纤维分布有利于拉伸性能的提升。最后,从工程应用角度,提出了UHPC拉伸力学行为需要进一步加强研究的建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘建忠
韩方玉
周华新
张丽辉
刘加平
关键词:  超高性能混凝土  拉伸力学行为  试验方法  基体  纤维    
Abstract: Highly-effective synergistic interaction between high strength matrix and fiber is the source of outstanding perfor-mance advantages of UHPC, a new type of cement-based materials exhibiting ultra-high strength, high ductility, and excellent durability. From the perspectives of testing method, matrix and fiber, this paper reviews the development status of tensile mechanical behavior of UHPC. It also offers some conclusions and opinions of the authors: tensile behavior of UHPC should be studied using dog-bone sample and exhibits obvious size effect and strong sensitivity to loading rate; one effective approach to improving UHPC's tensile performance is to carefully tailor its composition and size distribution; fiber type has the most remarkable influence with respect to the tensile performance, which can benefit from both the increase of fiber reinforcing factor and the tailoring of fiber distribution. Finally, some suggestions are proposed for the further study in order to promote engineering applications of UHPC.
Key words:  ultra-high performance concrete    tensile behavior    testing method    matrix    fiber
               出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528.31  
  TB301  
基金资助: *国家自然科学基金重点项目(51438003); 江苏省科技计划青年基金项目(BK20141012)
作者简介:  刘建忠:男,1976年生,博士,研究员级高级工程师,研究方向为高与超高性能混凝土 E-mail:ljz@cnjsjk.cn
引用本文:    
刘建忠, 韩方玉, 周华新, 张丽辉, 刘加平. 超高性能混凝土拉伸力学行为的研究进展*[J]. CLDB, 2017, 31(23): 24-32.
LIU Jianzhong, HAN Fangyu, ZHOU Huaxin, ZHANG Lihui, LIU Jiaping. An Overview on Tensile Behavior of Ultra-high Performance Concrete. Materials Reports, 2017, 31(23): 24-32.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.003  或          http://www.mater-rep.com/CN/Y2017/V31/I23/24
1 Rossi P. Ultra-high performance fiber-reinforced concretes[J]. Concr Int, 2001, 23(12): 46.
2 AFGC-SETRA. Ultra-high performance fibre reinforced concretes-interim recommendations and annex[R]. France: AFGC Publications, 2002.
3 Liu J Z. Preparation and static, dynamic mechanical behavior of ultra-high performance concrete[D]. Nanjing: Southeast University, 2013 (in Chinese).
刘建忠. 超高性能水泥基复合材料制备技术及静态拉伸行为研究[D]. 南京:东南大学, 2013.
4 Zhang W H. Investigation of microstructure formation mechanism and dynamic mechanical behavior of UHPCC[D]. Nanjing: Southeast University, 2013(in Chinese).
张文华. 超高性能水泥基复合材料微结构形成机理与动态力学行为研究[D]. 南京:东南大学, 2013.
5 张云升,张文华,刘建忠. 超高性能水泥基复合材料[M].北京:科学出版社,2014.
6 Saleem M A, Mirmiran A, Xia J, et al. Ultra-high-performance concrete bridge deck reinforced with high-strength steel[J]. ACI Struct J, 2011, 108(5): 601.
7 Buitelaar P, Braam R, Kaptijn N. Reinforced high performance concrete overlay system for rehabilitation and strengthening of orthotropic steel bridge decks[C]∥Orthotropic Bridge Conference. Sacramento, USA, 2004: 384.
8 Voo Y L, Foster S J, Voo C C. Ultrahigh-performance concrete segmental bridge technology: Toward sustainable bridge construction[J]. J Bridge Eng, 2014, 20(8): B5014001.
9 Wille K, EI-Tawil S, Naaman A E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading[J]. Cem Concr Compos, 2014,48:53.
10 Tran N T, Trana,T K, Kima D J. High rate response of ultra-high-performance fiber-reinforced concretes under direct tension[J]. Cem Concr Res, 2015, 69:72.
11 Nguyen D L, Ryu G S, Koh K T, et al. Size and geometry depen-dent tensile behavior of ultra-high-performance fiber-reinforced concrete[J]. Composites Part B, 2014, 58:279.
12 Wille K, Naaman A E. Bond stress-slip behavior of steel fibers embedded in ultra high performance concrete[C]∥Proceedings of 18th European Conference on Fracture and Damage of Advanced Fiber-reinforced Cement-based Materials. Dresden: Aedification Publi-shers, 2010: 99.
13 Beglarigale A, YazIcI H. Pull-out behavior of steel fiber embedded in flowable RPC and ordinary mortar[J]. Constr Build Mater, 2015, 75: 255.
14 Wille K, Naaman A E. Pullout behavior of high-strength steel fibers embedded in ultra-high-performance concrete[J]. ACI Mater J, 2012, 109(4): 479.
15 Liu J, Han F, Cui G, et al. Combined effect of coarse aggregate and fiber on tensile behavior of ultra-high performance concrete[J]. Constr Build Mater, 2016, 121: 310.
16 Naaman A E, Reinhardt H W. Setting the stage: Toward perfor-mance based classification of FRC composites[C]∥Proceedings of 4th RILEM Symposium on High Performance Fiber Reinforced Cement composites (HPFRCC4). France: RILEM, 2003:1.
17 Wille K, Naaman A E, El-Tawil S. Ultra high performance fiber reinforced concrete (UHP-FRC) record performance under tensile loading[J]. ACI Constr Int J, 2011,33(9):35.
18 Pyo S, Wille K, El-Tawil S, et al. Strain rate dependent properties of ultra high performance fiber reinforced concrete (UHP-FRC) under tension[J]. Cem Concr Compos, 2015, 56: 15.
19 Tuyan M, YazIcI H. Pull-out behavior of single steel fiber from SIFCON matrix[J]. Constr Build Mater, 2012,35:571.
20 Abu-Lebdeh T, Hamoush S, Heard W,et al. Effect of matrix strength on pullout behavior of steel fiber reinforced very-high strength concrete composites[J]. Constr Build Mater, 2011,25:39.
21 Silva F A, Mobasher B, Soranakom C, et al. Effect of fiber shape and morphology on interfacial bond and cracking behaviors of sisal fiber cement based composites[J]. Cem Concr Compos, 2011,33(8):814.
22 Lee Y, Kang S T, Kim J K. Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix[J]. Constr Build Mater, 2010;24(10):2030.
23 Li V C, Wu C, Wang S X, et al. Interface tailoring for strain-har-dening polyvinyl alcohol-engineered cementitous composite [J]. ACI Mater J, 2002, 99 (5):463.
24 Li V C, Wang Y, Backer S. Effect of incling angle,bundling and surface treatment on synthetic fibre pull-out from a cement matrix [J]. Composites, 1990, 21(2):132.
25 Li V C, Wang Y J, Backer S. A mircromechanical model of tensile-softening and bridging toughening of short random fiber reinforced brittle matrix composites [J]. Mech Phys Solids, 1991, 39(5):607.
26 Yang E H, Wang S, Yang Y, et al. Fiber-bridging constitutive law of engineered cementitious composites[J]. J Adv Concr Technol, 2008, 6(1): 181.
27 Li V C, Leung K Y. Steady-state and multiple cracking of short random fiber composites [J]. J Eng Mech, 1992, 118(11):2246.
28 Li V C. Postcrack scaling relations for fiber reinforced cementitious composites [J]. ASCE J Mater Civil Eng, 1992, 4(1):41.
29 Graybeal B A. Material property characterization of ultra-high performance concrete[R]. US: The National Academies of Sciences, Engineering and Medicine, 2006:188.
30 Charron J P, Denarie E, Bruehwiler E. Transport properties of water and glycolmin an ultra high performance fiber reinforced concrete (UHPFRC) under high tensile deformation[J]. Cem Concr Res 2008,38:689.
31 Graybeal B A. Tensile mechanical response of ultra-high-perfor-mance concrete[J]. Adv Civil Eng Mater, 2014, 4(2): 62.
32 Cunha V M C F, Barros J A O, Sena-Cruz J M. An integrated approach for modelling the tensile behaviour of steel fiber reinforced self-compacting concrete[J]. Cem Concr Res 2011,41:64.
33 Roth M J, Eamon C D, Slawson T R, et al. Ultra-high-strength glass fiber-reinforced concrete: Mechanical behavior and numerical modeling[J]. ACI Mater J 2010,107(2): 185.
34 Zhang J, Stang H, Li V. Experimental study on crack bridging in FRC under uniaxial fatigue tension[J]. J Mater Civ Eng, 2000,12(1):66.
35 Felicetti R, Gambarova P G, Sora M N, et al. Mechanical beha-viour of HPC and UHPC in direct tension at high temperature and after cooling[C]∥Fifth RILEM Symposium on Fibre-reinforced Concretes. France: RILEM, 2000: 749.
36 Park S H, Kim D J, Ryu G S, et al. Tensile behavior of ultra high performance hybrid fiber reinforced concrete[J]. Cem Concr Compos, 2012, 34(2): 172.
37 Wille K, Kim D J, Naaman A E. Strain-hardening UHP-FRC with low fiber contents[J]. Mater Struct, 2011, 44(3): 583.
38 Yoo D Y, Banthia N, Kang S T, et al. Size effect in ultra-high-performance concrete beams[J]. Eng Fract Mech, 2016, 157: 86.
39 Mahmud G H, Yang Z, Hassan A M. Experimental and numerical studies of size effects of ultra high performance steel fibre reinforced concrete (UHPFRC) beams[J]. Constr Build Mater, 2013, 48:1027.
40 Yoo D Y, Kang S T, Yoon Y S. Effect of fiber length and placement method on flexural behavior, tension softening curve, and fiber distribution characteristics of UHPFRC[J]. Constr Build Mater, 2014,64:67.
41 Yoo D Y, Kang S T, Lee J H, et al. Effect of shrinkage reducing admixture on tensile and flexural behaviors of UHPFRC considering fiber distribution characteristics[J]. Cem Concr Res 2013,54:180.
42 Sanal I, Zihnioglu N O. To what extent does the fiber orientation affect mechanical performance?[J]. Constr Build Mater, 2013, 44: 671.
43 Abrishambaf A, Cunha V M C F, Barros J A O. The influence of fibre orientation on the post-cracking tensile behaviour of steel fibre reinforced self-compacting concrete[J]. Frattura ed Integrità Strutturale, 2015, 31: 54.
44 Kang S T, Kim J K. The relation between fiber orientation and tensile behavior in an ultra high performance fiber reinforced cementitious composites (UHPFRCC)[J]. Cem Concr Res, 2011, 41(10): 1001.
45 Wang S, Li V C. Tailoring of pre-existing flaws in ECC matrix for saturated strain hardening[C]∥Proc FRAMCOS. US, 20045: 1005.
46 Li V C. Tailoring ECC for special attributes: A review[J]. Int J Concr Struct Mater, 2012, 6(3): 135.
47 Liu J, Sun W, Miao C, et al. Assessment of fiber distribution in steel fiber mortar using image analysis[J]. J Wuhan University of Technology: Mater Sci Ed, 2012, 27(1): 166.
48 Pyo S, Alkaysi M, El-Tawil S. Crack propagation speed in ultra high performance concrete (UHPC)[J]. Constr Build Mater, 2016, 114: 109.
49 Wille K, El-Tawil S, Naaman A E. Strain rate dependent tensile behavior of ultrahigh performance fiber reinforced concrete[C]∥RILEM Proceedings of HPFRCC 6, Ann Arbor. MI, USA, 2012:382.
50 Cadoni E, Meda A, Plizzari G A. Tensile behaviour of FRC under high strain-rate[J]. Mater Struct, 2009, 42: 1283.
51 Tran T K, Kim D J. Investigating direct tensile behavior of high performance fiber reinforced cementitious composites at high strain rates[J]. Cem Concr Res,2013,50:62.
52 Tran T K, Kim D J. High strain rate effects on direct tensile beha-vior of high performance fiber reinforced cementitious composites[J]. Cem Concr Compos, 2014,45:186.
53 Kim D J, El-Tawil S, Naaman A E. Rate-dependent tensile beha-vior of high performance fiber reinforced cementitious composites[J]. Mater Struct, 2009,42:399.
54 Caverzan A, Cadoni E, Di Prisco M. Tensile behaviour of high performance fibre reinforced cementitious composites at high strain rates[J]. Int J Impact Eng, 2012,45:28.
55 Mechtcherine V, Siva F, et al. Behavior of strain-hardening cement-based composites under high strain rates[J]. J Adv Concr Technol, 2011,9:51.
56 Mechtcherine V, Millon O, Butler M, et al, Mechanical behaviour of strain hardening cement-based composites under impact loading[J]. Cem Concr Compos,2011,33:1.
57 Ranade R, Li V C, Heard W F. Tensile rate effects in high strength-high ductility concrete[J]. Cem Concr Res, 2015, 68: 94.
58 Wille K, Boisvert-Cotulio C. Material efficiency in the design of ultra-high performance concrete[J]. Constr Build Mater, 2015, 86: 33.
59 Wu Z M, Shi C J, Khayat K H. Influence of silica fume content on microstructure development and bond to steel fiber in ultra-high strength cement-based materials (UHSC)[J]. Cem Concr Compos, 2016, 71: 97.
60 Kim D J, Wille K, Naaman A E, et al. Strength development tensile behavior of strain hardening fiber reinforced concrete[M]∥High Performance Fiber Reinforced Cement Composites 6. France: RELIM,2012:3.
61 Rossi P. Influence of fibre geometry and matrix maturity on the mechanical performance of ultra high-performance cement-based composites [J]. Cem Concr Compos, 2013, 37: 246.
62 Yu R, Spiesz P, Brouwers H J H. Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC)[J]. Cem Concr res, 2014, 56: 29.
63 Yu R, Spiesz P, Brouwers H J H. Development of ultra-high performance fibre reinforced concrete (UHPFRC): Towards an efficient utilization of binders and fibres [J]. Constr Build Mater, 2015, 79: 273.
64 Qian S Z, Li V C. Simplified inverse method for determining the tensile strain capacity of strain hardening cementitious composites[J]. J Adv Concr Technol, 2007, 5(2): 235.
65 Kang S T, Lee Y, Park Y D, et al. Tensile fracture properties of an ultra high performance fiber reinforced concrete (UHPFRC) with steel fiber[J]. Compos Struct, 2010, 92(1): 61.
66 Baby F, Graybeal B, Marchand P, et al. UHPFRC tensile behavior characterization: Inverse analysis of four-point bending test results[J]. Mater Struct, 2013, 46(8): 1337.
67 Ma J, Orgass M, Dehn F, et al. Comparative investigations on ultra-high performance concrete with and without coarse aggregates[C]∥Proceedings of International Symposium on Ultra High Performance Concrete. Germany, 2004:205.
68 Kim D J, Park S H, Ryu G S, et al. Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers[J]. Constr Build Mater, 2011, 25(11): 4144.
69 Yoo D Y, Kim S, Park G J, et al. Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-perfor-mance fiber-reinforced cement composites[J]. Compos Struct, 2017, 174: 375.
70 Kim D, El-Tawil S, Naaman A E. High tensile strength strain-hardening FRC composites with less than 2% fiber content[C]∥Proceedings of Second International Symposium on Ultra High Performance Concrete. Kassel, Germany, 2008:169.
71 Wille K, Naaman A E, El-Tawil S, et al. Ultra-high performance concrete and fiber reinforced concrete: Achieving strength and ductility without heat curing[J]. Mater Struct, 2012, 45(3): 309.
72 Feng J, Sun W W, Wang X M, et al. Mechanical analyses of hooked fiber pullout performance in ultra-high-perfor-mance concrete[J]. Constr Build Mater, 2014, 69: 403.
73 Xu M, Hallinan B, Wille K. Effect of loading rates on pullout behavior of high strength steel fibers embedded in ultra-high perfor-mance concrete[J]. Cem Concr Compos, 2016, 70: 98.
74 Benson S D P, Karihaloo B L. CARDIFRC-development and mechanical roperties. Part Ⅲ: Uniaxial tensile response and other mechanical roperties[J]. Mag Concr Res, 2005;57(8):433.
75 Farhat F A, Nicolaides D, Karihaloo A, et al. High performance fiber-reinforced cementitious composite (CARDIFRC)— Performance and pplication to retrofitting[J]. Eng Fract Mech 2007;74(1-2):151.
76 Rossi P, Antonio A, Parant E, et al Bending and compressive behaviors of a new cement composite[J]. Cem Concr Res, 2005,35(1):27.
77 Rossi P. High performance multimodal fiber reinforced cement composite HPMFRCC: The LCPC experience[J]. ACI Mater J, 1997,94(6):478.
78 Habel K. Structural behaviour of elements combining ultra-high performance fibre reinforced concrete (UHP-FRC) and reinforced concrete[D]. Switzerland: Ecole Polytechnique Federale de Lausanne,2004.
79 Rossi P, Tailhan J L. Uniaxial tensile test on a new cement compo-site having a hardening behaviour[C]∥Sixth RILEM Symposium in Fibre-reinforced Concretes (FRC). Varenna, Italy,2004.
80 Yoo D Y, Shin H O, Yang J M, et al. Material and bond properties of ultra high performance fiber reinforced concrete with micro steel fibers[J]. Composites Part B, 2014, 58: 122.
81 Aydin S, Baradan B. The effect of fiber properties on high perfor-mance alkaliactivated slag/silica fume mortars[J]. Compos Part B: Eng, 2013,45(1):63.
82 Yoo D Y, Zi G, Kang S T, et al. Biaxial flexural behavior of ultra-highperformance fiber-reinforced concrete with different fiber lengths and placement methods[J]. Cem Concr Compos, 2015,63:51.
83 Yoo D Y, Kang S T, Yoon Y S. Enhancing the flexural perfor-mance of ultra-highperformance concrete using long steel fibers[J]. Compos Struct, 2016,147:220.
84 Ferrara L. High performance fiber reinforced self-compacting concrete (HPFRSCC): A “smart material” for high end engineering applications[C]∥3rd International Workshop on Heterogeneous Architectures and Computing. Madrid, 2012:325.
85 Kang S T, Kim J K. Investigation on the flexural behavior of UHPCC considering the effect of fiber orientation distribution[J]. Constr Build Mater, 2012,28(1):57.
86 Yang I H, Joh C, Kim B S. Structural behavior of ultra high performance concrete beams subjected to bending[J]. Eng Struct, 2010,32(11):3478.
87 Cunha V M C F, Barros J A O, Sena-Cruz J M, Pullout behaviour of steel fibres in self compacting concrete[J]. ASCE Mater Civil Constr, 2010,22:1.
88 Ponikiewski T, Katzer J, Bugdol M, et al. X-ray computed tomography harnessed to determine 3D spacing of steel fibres in self compacting concrete (SCC) slabs[J]. Constr Build Materi, 2015, 74: 102.
89 Ponikiewski T, Katzer J, Bugdol M, et al. Steel fibre spacing in self-compacting concrete precast walls by X-ray computed tomography[J]. Mater Struct, 2015, 48(12): 3863.
90 Ferrara L, Meda A. Relationships between fibre distribution, workability and the mechanical properties of SFRC applied to precast roof elements[J]. Mater Struct,2006,39:411.
91 Kim S W, Kang, S T, Park, J J, et al. Effect of filling method on fibre orientation and dispersion and mechanical properties of UHPC[C]∥Proceedings of Second International Symposium on Ultra High Performance Concrete. Kassel, Germany, 2008: 185.
92 Liu J, Li C, Liu J, et al. Characterization of fiber distribution in steel fiber reinforced cementitious composites with low water-binder ratio[J]. Indian J Eng Mater Sci, 2011, 18:449.
93 Liu J, Li C, Liu J, et al. Study on 3D spatial distribution of steel fibers in fiber reinforced cementitious composites through micro-CT technique[J]. Constr Build Mater, 2013, 48: 656.
[1] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[2] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[3] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[4] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[5] 常江. 苯并三唑衍生物杂化聚氨酯基复合材料的微观形貌及力学性能探究[J]. 材料导报, 2019, 33(6): 1074-1078.
[6] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[7] 司雯, 曹明莉, 冯嘉琪. 纤维增强水泥基复合材料的流动性与流变性研究进展[J]. 材料导报, 2019, 33(5): 819-825.
[8] 曹忠亮, 富宏亚, 付云忠, 邵忠喜. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900.
[9] 赵雪妮, 杨建军, 何富珍, 张黎, 王瑶, 张伟刚, 刘庆瑶. 碳纤维表面处理及熔盐电镀Al涂层的研究[J]. 材料导报, 2019, 33(4): 674-677.
[10] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[11] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[12] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[13] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[14] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[15] 姚未来,江世永,蔡涛,龚宏伟,陶帅. 粘贴纤维增强复合材料加固混凝土梁的蠕变特性研究进展[J]. 材料导报, 2019, 33(17): 2890-2901.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed