Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 17-23    https://doi.org/10.11896/j.issn.1005-023X.2017.023.002
  专题栏目:超高性能混凝土及其工程应用 |
超高性能混凝土的火灾高温性能研究综述*
朋改非, 牛旭婧, 成铠
北京交通大学土木建筑工程学院,北京 100044
Research on Fire Resistance of Ultra-high-performance Concrete:a Review
PENG Gaifei, NIU Xujing, CHENG Kai
Faculty of Civil Engineering and Architecture, Beijing Jiaotong University, Beijing 100044
下载:  全 文 ( PDF ) ( 1228KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超高性能混凝土(Ultra-high-performance concrete,UHPC),以其突出的优点如超高强度与超高耐久性等,符合可持续发展战略,是混凝土科技发展的主要方向之一。近年来,UHPC的火灾高温性能吸引了广泛关注。由文献综述可知,高温会引发UHPC的爆裂和力学强度变化。爆裂主要由蒸汽压机理控制,蒸汽来源于内部游离水,高的内部湿含量往往导致剧烈的高温爆裂,有效的抑制措施是掺加聚合物纤维如聚丙烯(Polypropylene,PP)纤维。关于钢纤维对UHPC抗高温爆裂性的影响,还存在争议。高温作用后UHPC的残余强度在常温至300 ℃或400 ℃范围内有所增长,而在更高的温度下则为单调下降。残余强度增长是高温促进混凝土内部的一系列化学变化所引起。最新研究发现,组合养护是有效改善UHPC火灾高温性能的新方法,可避免爆裂发生。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朋改非
牛旭婧
成铠
关键词:  超高性能混凝土(UHPC)  火灾高温性能  爆裂  力学强度    
Abstract: Ultra-high-performance concrete (UHPC) which exhibits superb properties with respect to strength and durability, within the scope of the sustainable development strategy of China, has become one of the major development directions of concrete science and technology. In recent years, fire resistance of UHPC has provoked extensive research attention. Based on a literature review, it can be found that high temperature can cause explosive spalling and mechanical strength variation of UHPC, in which the former is mainly governed by a vapor pressure mechanism. The vapor pressure is induced by internal free water, as high moisture content can lead to severe spalling. Adding polymer fiber, such as polypropylene (PP) fiber, is an effective approach to prevent spalling. However, the influence of steel fiber on UHPC's resistance to explosive spalling is still under active controversy. Moreover, residual strength of UHPC exposed to high temperature will increase within the range from room temperature to 300 ℃ or 400 ℃ due to a series of high-temperature-activated chemical changes in UHPC, but will decrease monotonically at higher temperature. As a new research finding, combined curing has demonstrated a favorable efficiency to enhancing the resistance of UHPC to explosive spalling under high temperature, which displays a potential as a novel approach to prohibiting the occurrence of spalling.
Key words:  ultra-high-performance concrete (UHPC)    fire resistance    spalling    mechanical strength
               出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528.31  
基金资助: *国家自然科学基金(51278048; 50978026); 北京市自然科学基金(8172036)
作者简介:  朋改非:男,1966年生,教授,博士研究生导师,主要从事高性能和超高性能混凝土的研究 E-mail:gfpeng@bjtu.edu.cn
引用本文:    
朋改非, 牛旭婧, 成铠. 超高性能混凝土的火灾高温性能研究综述*[J]. CLDB, 2017, 31(23): 17-23.
PENG Gaifei, NIU Xujing, CHENG Kai. Research on Fire Resistance of Ultra-high-performance Concrete:a Review. Materials Reports, 2017, 31(23): 17-23.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.002  或          http://www.mater-rep.com/CN/Y2017/V31/I23/17
1 任佳. 科技助力超高性能混凝土应用[N]. 中国建设报, 2013-3-4.
2 Schmidt M. Sustainable building with UHPC-coordinated research program in Germany [C]∥ Proceedings of HiPerMat 2012 (3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials). Kassel, 2012.
3 Sun W. Advances in research of service characteristics of modern concrete materials and structures [J]. China Concr, 2009(7): 20 (in Chinese).
孙伟. 现代混凝土材料与结构服役特性的研究进展[J]. 混凝土世界, 2009(7): 20.
4 内田裕市, 片桐誠. さらなる超高強度高靭性コンクリートの可能性について[J]. コンクリート工学, 2006, 44(12): 16.
5 Yan P Y, Feng J W. State-of-art overview about the applications of ultra high performanceconcrete [J]. New Build Mater, 2008(13): 141(in Chinese).
阎培渝, 冯建文. 超高性能混凝土应用现状[J]. 新型建筑材料, 2008(13): 141.
6 Gy?rgy L Balázs. Material and structural properties for creating high performance concrete structures [C]∥ Speech at the 10th International Symposium on High Performance Concrete. Beijing, 2015.
7 Kalny M, Kvasnicka V, Komanec J, et al. Cable-stayed footbridge with UHPC segmental deck [C]∥ Speech at the 10th International Symposium on High Performance Concrete. Beijing, 2014.
8 中国建筑业协会网页. “在京基100项目C120超高性能混凝土超高泵送(417米)新闻发布会”在深圳召开[EB/OL]. [2011-4-15]. http://www.zgjzy.org/NewsShow.aspx?id=1264.
9 中建四局网页. 广州西塔C100超高性能免振自密实混凝土泵送再创新高[EB/OL]. [2009-8-17]. http://www.cscec4b.com.cn/show_news.asp?id=2927.
10 广州天达混凝土有限公司、北京老科总清华大学协会、中建四局有限公司. 多功能混凝土技术的研发与应用科技成果鉴定资料[Z]. 2015-01-05.
11 郑少忠, 袁泉. 哈尔滨火灾已致5死14伤,多名责任人被控制[EB/OL]. 人民日报, [2015-1-4]. http://news.sohu.com/20150104/n407493209.shtml.
12 徐胤. 北京木樨园一服装市场失火, 烧毁59个门脸[EB/OL]. 京华时报, [2015-1-14]. http://news.qq.com/a/20050114/000074.htm.
13 张伟. 迪拜336米摩天楼突发大火[EB/OL]. 北京青年报, [2015-2-22]. http://news.163.com/15/0222/00/AJ1304C700014AED.html.
14 Neville A M. Properties of concrete [M]. Harlow: Longman Group Limited, 1995: 844.
15 Hertz K D. Danish investigations on silica fume concretes at eleva-ted temperatures [J]. ACI Mater J, 1992, 89(4): 345.
16 Aitcin P C. High-performance concrete [M]. England: E.&FN Spon, 1998.
17 Chandra S, Baerntsson L, Anderberg Y. Some effects of polymer addition on the fire resistance of concrete [J]. Cem Concr Res, 1980, 10: 367.
18 Diederichs U, Jumppanen U M, Schneider U. High temperature properties and spalling behavior of high strength concrete [C]∥ Proceedings of the 4th workshop on High Performance Concrete, Hochschule for Architktur and Bauwessen and Bauwesen (HAB) Weimar. Germany, 1995: 219.
19 Peng G F, Yang W W, Zhao J, et al.Explosive spalling and residual mechanical properties of fiber-toughened high-performance concrete subjected to high temperatures [J]. Cem Concr Res, 2006, 36(4): 723.
20 Majorana C E, Pesavento F. Damage and spalling in HP and UHF concrete at high temperature [J]. Damage and Fracture Mechanics VI: Computer Aided Assessment and Control, 2000, 26: 105.
21 Gawin D, Majorana C E, Pesavento F, et al. A new approach in the hygro-thermo-mechanical analysis of concrete at high temperature [C]∥Proceedings of the Eighth International Conference on Computing in Civil and Building Engineering. California, 2000.
22 Ratvio J. Ultralujan betonin kayttosovellukset. Esitutkimus (Preliminary study of ultra strength concrete applications) [J]. VTT Tiedotteita- Valtion Teknillinen Tutkimuskeskus, 2001(2078): 3.
23 Bamonte P, Meda A, Gambarova P G. Today??s concretes exposed to fire-test results and sectional analysis [J]. Struct Concr, 2008, 9(1): 19.
24 Khoury G, Majorana C, Pesavento F, et al. Modelling of heated concrete [J]. Mag Concr Res, 2002, 54(2): 77.
25 Niu X Q. Development of powder concrete and its influence on civil air defense projects [J]. Housing Mater Appl, 2005, 33(4): 38 (in Chinese).
牛锡泉. 粉末混凝土发展及其对人防工程的影响[J]. 房材与应用, 2005, 33(4): 38.
26 Li L, Gao R. Large-span prestressed beam string structures casted with reactive powder concrete [J]. Res Appl Build Mater, 2003, 5(3): 13 (in Chinese).
李良, 高日. 大跨预应力活性粉末混凝土张弦梁结构[J]. 建材技术与应用, 2003, 5(3): 13.
27 Schneider U, Diederichs U, Horvath J. Verhalten von ultrahochfesten betonen (UHPC) unter brandbeanspruchung (behaviour of ultra high performance concrete (UHPC) under fire exposure) [J]. Betonund Stahlbetonbau, 2003, 98(7): 408.
28 Liu C T, Huang J S. Fire performance of highly flowable reactive powder concrete [J]. Constr Build Mater, 2009, 23(5): 2072.
29 Peng G F, Huang Y Z, Wang H S, et al. Mechanical properties of recycled aggregate concrete at low and high water/binder ratios [J]. Adv Mater Sci Eng, 2013, 842929: 1.
30 Sun B, Lin Z X. Investigation on spalling resistance of ultra-high-strength [J]. Case Studies Constr Mater, 2016, 4: 146.
31 Yang J, Li W, Hong B L, et al. An experimental investigation of the thermal spalling of polypropylene-fibered reactive powder concrete exposed to elevated temperatures [J]. Sci Bull, 2015, 60(23): 2022.
32 Sanchayan S, Foster S J. High temperature behaviour of hybrid steel-PVA fibre reinforced reactive powder concrete [J]. Mater Struct, 2016, 49(3): 769.
33 Kahanji C, Ali F, Nadjai A. Explosive spalling of ultra-high performance fibre reinforced concrete beams under fire [J]. J Struct Fire Eng, 2016, 7(4): 328.
34 Nazri F M, Jaya R P, Bakar B H A, et al. Fire resistance of ultra-high performance fibre reinforced concrete due to heating and cooling [C]∥Proceedings of Web of Conferences on Materials Science, Engineering and Chemistry, 2017.
35 Yang J, Peng G F. Effect of fiber on residual strength and explosive spalling behavior of ultra-high-performance concrete exposed to high temperature [J]. Acta Mater Compos Sin, 2016, 33(11): 418 (in Chinese).
杨娟, 朋改非. 纤维对超高性能混凝土残余强度及高温爆裂性能的影响[J]. 复合材料学报, 2016, 33(11): 418.
36 桜木文敏, 鈴木清孝, 閑田徹志. 超高強度コンクリートに関する開発研究(その5 小型供試体における耐火性状) [M]∥日本建築学会大会学術講演梗概集. 近畿,1992: 479.
37 宮本圭一, 大内富夫, 桜木文敏, 等. 超高強度コンクリートに関する開発研究(その6 実大RC柱試験体における耐火性状) [M]∥日本建築学会大会学術講演梗概集. 近畿,1992: 481.
38 吉野茂, 松戸正士, 菊田繁美. 超高強度材料を用い鉄筋コンクリート柱の耐火性に関する研究(その2 載荷加熱試験結果) [M]∥日本建築学会大会学術講演梗概集. 近畿,2002: 23.
39 太田逹見, 橋田浩, 森田武. 石灰石骨材を用超高强度コンクリートの耐火性能[M]∥日本建築学会大会学術講演梗概集.北陸, 2010: 67.
40 澤田由美子, 濱田真, 浦川和也, 等. 超高强度材料を用いた鉄筋コンクリート柱の耐火性に関する研究(その8 ポリプロピレン繊維混入による爆裂対策の加熱実験結果) [M]∥日本建築学会大会学術講演梗概集.北海道, 2004: 99.
41 增田隆行, 高橋孝二, 山田人司, 等. 超高強度材料を用いた鉄筋コンクリート柱の耐火性に関する研究(その11 Fc 150 N/mm2 級コンクリート柱の載荷加熱実験結果) [M]∥日本建築学会大会学術講演梗概集. 近畿,2005: 79.
42 Hosser D, Kampmaier B, Hollmann D. Behavior of ultra high performance concrete (UHPC) in case of fire [C]∥Proceedings of HiPerMat 2012 (3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials). Kassel, Germany, 2012: 573.
43 Lin L X, Ye H W, Feng N Q, et al. Experimental research on improving the brittleness of C120 concrete with ultra-high strength by adding polypropylene fiber [J]. Ind Constr, 2012, 42(11): 1(in Chinese).
林力勋,叶浩文, 冯乃谦, 等. 掺聚丙烯纤维改善C120超高强混凝土脆性的试验研究[J]. 工业建筑, 2012, 42(11): 1.
44 Choe G, Kim G, Gucunski N, et al. Evaluation of the mechanical properties of 200 MPa ultra-high-strength concrete at elevated temperatures and residual strength of column [J]. Constr Build Mater, 2015, 86: 159.
45 Peng G F, Yang J, Shi Y X, et al. Explosive spalling resistance of ultra-high-performance concrete [J]. J Build Mater, 2017, 20(2): 231(in Chinese).
朋改非, 杨娟, 石云兴, 等. 超高性能混凝土抗高温爆裂性能试验研究[J]. 建筑材料学报, 2017, 20(2): 231.
46 Peng G F, Yang J, Shi Y X. Experimental study on residual mechanical properties of ultra-high performance concrete exposed to high temperature [J]. China Civil Eng J, 2017, 50(4): 1(in Chinese).
朋改非, 杨娟, 石云兴. 超高性能混凝土高温后残余力学性能试验研究[J]. 土木工程学报, 2017, 50(4): 1.
47 Peng G F, Chan S Y N, Anson M. Chemical kinetics of C-S-H decomposition in hardened cement paste subjected to elevated temperatures up to 800 ℃ [J]. Adv Cem Res J, 2001, 13(2): 47.
48 Kim Y S, Ohmiya Y, Kanematsu M, et al. Effect of aggregate on residual mechanical properties of heated ultra-high-strength concrete [J]. Mater Struct, 2016, 49(9): 3847.
49 Peng G F, Niu X J, Shang Y J. Influence of combined curing on the properties and microstructure of ultra high performance concrete incorporating coarse aggregate [C]∥Proceedings of the 3rd International RILEM Conference on Microstructure Related Durability of Cementitious Composites. Nanjing, 2016.
50 朋改非, 尚亚杰, 牛旭婧, 等. 一种超高性能混凝土及其制备方法: 中国, 105693166A[P]. 2016-06-22.
[1] 李茂红, 温静, 李依芮, 屈树新, 曾晓辉, 王平. 控制聚合与沉淀协同作用改善高铁轨道板涂料用水玻璃性能[J]. 材料导报, 2018, 32(24): 4264-4268.
[2] 王倩楠, 顾春平, 孙伟. 水泥-粉煤灰-硅灰基超高性能混凝土水化过程微观结构的演变规律*[J]. CLDB, 2017, 31(23): 85-89.
[3] 季韬, 林晓溁, 梁咏宁, 陈宝春, 杨政险. 钢纤维对掺花岗岩石粉UHPC的增强增韧:磷酸锌改性和纤维形状的影响及机理*[J]. CLDB, 2017, 31(23): 66-72.
[4] 邵旭东, 邱明红, 晏班夫, 罗军. 超高性能混凝土在国内外桥梁工程中的研究与应用进展*[J]. CLDB, 2017, 31(23): 33-43.
[5] 肖俊华, 左迎峰, 吴义强, 刘文杰, 吴志平, 孟陶陶. 硅丙乳液对镁系无机胶黏剂性能和微结构的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 49-54.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed