Please wait a minute...
材料导报  2023, Vol. 37 Issue (10): 21060198-5    https://doi.org/10.11896/cldb.21060198
  无机非金属及其复合材料 |
SiC对能源桩混凝土传热与力学性能的影响
尹雅1, 李庆文1,2,*, 乔兰1, 张庆龙1
1 北京科技大学土木与资源工程学院,北京 100083
2 绿色低碳冶炼与资源综合利用联合实验室,北京 100083
Effect of SiC on the Heat Transfer and Mechanical Properties of Energy Pile Concrete
YIN Ya1, LI Qingwen1,2,*, QIAO Lan1, ZHANG Qinglong1
1 School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Jianlong Group & USTB Joint Laboratory, Beijing 100083, China
下载:  全 文 ( PDF ) ( 21542KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 能源桩系统作为一种建筑节能技术,通过开发清洁能源可有效缓解能源危机。以添加SiC粉末制备的传热强化型混凝土为研究对象,综合能源桩强化换热模型分析、室内传热与力学性能试验和中心热源热成像结果可知,在相同环境温度下,随着SiC含量的增加,SiC混凝土导热系数呈线性增加。在力学性能方面,当SiC质量分数达到10%时,混凝土的抗压强度和抗拉强度较素混凝土分别增加6.3%和8.3%;当SiC质量分数达到15%时,混凝土的抗压强度增长速率有所放缓,抗拉强度有所下降。中心热源热成像结果也进一步验证SiC试样自内向外的传热效率显著高于普通混凝土,与SiC含量为0%的试样相比,SiC含量为10%的试样的中心温度降低39.2%。由此可见,当SiC粉末添加量达到10%时,强化型混凝土的导热效率显著增加且抗压强度提升最为明显,这为提高能源桩的热效益提供一种可靠的参考方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹雅
李庆文
乔兰
张庆龙
关键词:  能源桩  SiC混凝土  导热系数  传热强化  中心热源    
Abstract: As a building energy-saving technology, energy pile system can effectively alleviate the energy crisis by developing clean energy. The heat transfer enhanced concrete prepared by adding SiC powder is taken as the research object. Through the analysis of energy pile enhanced heat transfer model, indoor heat transfer and mechanical properties test and central heat source thermal imaging results, the results showed that the thermal conductivity of SiC concrete increases linearly with the increase of SiC content at the same ambient temperature. In terms of mechanical properties, when the mass ratio of SiC reaches 10%, the compressive strength and tensile strength of concrete are increased by 6.3% and 8.3% respectively compared with plain concrete. When the mass ratio of SiC reaches 15%, the growth rate of compressive strength slows down and the tensile strength decreases. Central heat source imaging also further verified that the heat transfer efficiency from inside to outside of SiC sample was significantly higher than that of ordinary concrete. Compared with 0% SiC sample, the central temperature of 10% SiC sample decreased by 39.2%. It is found that when the addition of SiC powder reaches 10%, the thermal conductivity of reinforced concrete increases significantly and the compressive strength increases most obviously, which provides a reliable reference method for improving the thermal efficiency of energy pile.
Key words:  energy pile    SiC concrete    thermal conductivity    heat transfer enhancement    center of the heat source
出版日期:  2023-05-25      发布日期:  2023-05-23
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52274107);北京科技大学青年教师学科交叉研究项目(FRF-IDRY-GD21-001)
通讯作者:  *李庆文,北京科技大学土木工程专业副教授。2009年6月于北京理工大学获得工学学士学位,2015年6月于北京科技大学获得博士学位,然后留校工作至今。主要研究方向为能源地下结构,发表学术论文50余篇,授权专利10余项。qingwenli@ustb.edu.cn   
作者简介:  尹雅,2020年6月于北京科技大学获得工学学士学位,现为北京科技大学土木工程硕士研究生。目前研究方向为能源地下结构、混凝土新型材料。
引用本文:    
尹雅, 李庆文, 乔兰, 张庆龙. SiC对能源桩混凝土传热与力学性能的影响[J]. 材料导报, 2023, 37(10): 21060198-5.
YIN Ya, LI Qingwen, QIAO Lan, ZHANG Qinglong. Effect of SiC on the Heat Transfer and Mechanical Properties of Energy Pile Concrete. Materials Reports, 2023, 37(10): 21060198-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060198  或          http://www.mater-rep.com/CN/Y2023/V37/I10/21060198
1 Xia C C, Cao S D, Wang W. Chinese Journal of Underground Space and Engineering, 2009, 5(3), 419(in Chinese).
夏才初, 曹诗定, 王伟. 地下空间与工程学报, 2009, 5(3), 419.
2 Zhao J, Zhang C L, Li X G. Acta Energiae Solaris Sinica, 2006, 27(1), 63(in Chinese).
赵军, 张春雷, 李新国. 太阳能学报, 2006, 27(1), 63.
3 Zhao H F, Gui S Q, Li Q, et al. Journal of Yangtze River Scientific Research Institute, 2017, 34(8), 153(in Chinese).
赵海丰, 桂树强, 李强, 等. 长江科学院院报, 2017, 34(8), 153.
4 Liu H L, Wang C L, Kong G Q, et al. Rock and Soil Mechanics, 2016, 37(S1), 441(in Chinese).
刘汉龙, 王成龙, 孔纲强, 等. 岩土力学, 2016, 37(S1), 441.
5 Go G H, Lee S R, Yoon S, et al. Applied Energy, 2014, 125, 165.
6 Xiang Y, Su H, Gou W S, et al. International Journal of Heat and Mass Transfer, 2015, 91, 777.
7 Fadejev J, Kurnitski J. Energy and Buildings, 2015, 106, 23.
8 Park S, Lee D, Choi H J, et al. Energy, 2015, 81, 56.
9 Ghasemi O, Basu P. Energy and Buildings, 2013, 66, 470.
10 Park H, Lee S R, Yoon S, et al. Applied Energy, 2013, 103, 12.
11 Faizal M, Bouazza A, Singh R. Renewable and Sustainable Energy Reviews, 2016, 57, 16.
12 Caulk R, Ghazanfari E, Mccartney J. Geomechanics for Energy and the Environment, 2016, 5, 1.
13 Ghasemi O, Basu P. Renewable Energy, 2016, 86, 1178.
14 Cecinato F, Loveridge F. Energy, 2015, 82, 1021.
15 Astrain D, Aranguren P, Martinez A, et al. Applied Thermal Enginee-ring, 2016, 103, 1289.
16 Xiao J Z, Song Z W, Zhang F. Journal of Building Materials, 2010, 13(1), 17(in Chinese).
肖建庄, 宋志文, 张枫. 建筑材料学报, 2010, 13(1), 17.
17 Ma K Z, Liu L, Liu C, et al. Journal of Building Materials, 2017, 20(2), 261(in Chinese).
马恺泽, 刘亮, 刘超, 等. 建筑材料学报, 2017, 20(2), 261.
18 Puzach V G, Shustrov N S, Chervyakov V M, et al. Refractories and Industrial Ceramics, 2019, 60(6), 296.
19 Sui Z L, Zhao C L, Li Q W, et al. Journal of Guangxi University (Natural Science Edition), 2021, 46(1), 83(in Chinese).
隋智力, 赵春雷, 李庆文, 等. 广西大学学报(自然科学版), 2021, 46(1), 83.
20 Gong Z W, Wang Y. New Building Materials, 2021, 48(2), 146(in Chinese).
弓中伟, 王颖. 新型建筑材料, 2021, 48(2), 146.
21 Jiang F. Building Materials World, 2020, 41(5), 22(in Chinese).
江锋. 建材世界, 2020, 41(5), 22.
22 Wang J P, He D G, Zhao W Y. Equipment for Electronic Products Manufacturing, 2018, 47(4), 23(in Chinese).
王家鹏, 贺东葛, 赵婉云. 电子工业专用设备, 2018, 47(4), 23.
23 Mohammed F, Abdelmalek B, Rao M. Renewable and Sustainable Energy Reviews, 2016, 57, 16.
24 Kim H G, Qudoos A, Jeon I K, et al. Construction and Building Mate-rials, 2020, 258, 119637.
25 普通混凝土配合比设计规程(JGJ 55-2011), 中国建筑工业出版社, 2011.
26 Zhu L, Dai T, He Z C. Materials Science and Technology, 2017, 25(6), 50(in Chinese).
朱琳, 戴挺, 何志成. 材料科学与工艺, 2017, 25(6), 50.
[1] 林伯, 句子涵, 胡定华, 李强. 基于泡沫铜骨架高导热复合相变储热材料的热性能研究[J]. 材料导报, 2022, 36(Z1): 21110168-5.
[2] 魏宁, 铁生年. 功能化碳纳米纤维增强芒硝基相变储能材料的热性能[J]. 材料导报, 2022, 36(6): 21050177-7.
[3] 范利丹, 孙亮, 余永强, 张纪云, 郭佳奇. 偏高岭土提高水泥基注浆材料在高地温隧道工程中的适应性[J]. 材料导报, 2022, 36(6): 20100228-8.
[4] 贾海林, 项海军, 郭明生, 赵万里, 赵晓举, 张民远, 于水军. 深热井巷热害隔离材料复配体系及性能研究[J]. 材料导报, 2022, 36(20): 21050031-10.
[5] 张雨, 铁生年, 汪长安. 改性纳米碳粉芒硝基纳米流体强化传热[J]. 材料导报, 2022, 36(18): 20100294-7.
[6] 宋一龙, 赵芳, 李志尊, 程兆刚, 黄红军. 热处理温度对SiO2微纳纤维形貌及隔热性能的影响[J]. 材料导报, 2022, 36(12): 21030010-5.
[7] 贾东, 蔡淑红, 李献强, 郝文静, 刘波涛, 谭凯锋, 王峰. 纳米流体导热介质研究进展[J]. 材料导报, 2021, 35(z2): 540-549.
[8] 范翠红, 秦会斌, 周继军. 酚醛树脂在铝基板上的应用[J]. 材料导报, 2021, 35(z2): 589-592.
[9] 刘刚, 贾莉斯, 陈颖, 汪嘉城, 莫松平. SiO2-H2O纳米悬浮液的导热及其机理分析[J]. 材料导报, 2021, 35(Z1): 116-120.
[10] 陈玉星, 王天浩, 黎晓杰, 付海, 何力, 龚维. LDH-热膨胀微胶囊的合成及发泡EVA复合材料的综合性能[J]. 材料导报, 2021, 35(4): 4194-4199.
[11] 赵立晓, 王鹏刚, 王兰芹, 赵铁军, 光文涛. 混凝土内部温湿度响应参数分析:水分扩散系数与导热系数[J]. 材料导报, 2021, 35(12): 12075-12080.
[12] 张亚娟, 李亚楠, 宋晓艳, 王海滨, 侯超, 聂祚仁. 特殊粒径分布球形Ni粉的制备及SLM工艺性能研究[J]. 材料导报, 2020, 34(6): 6114-6119.
[13] 郭建业, 赵英民, 吴朝军, 李文静, 杨洁颖, 张丽娟, 苏力军. 温度对石英纤维毡隔热性能的影响[J]. 材料导报, 2020, 34(24): 24019-24022.
[14] 仇中柱, 李晟南, 魏丽东, 秦承芳, 姚远, 姜未汀, 郑莆燕, 张涛. 相变微胶囊悬浮液中颗粒润湿性对导热系数的影响[J]. 材料导报, 2019, 33(Z2): 623-626.
[15] 丁杨, 邓满宇, 周双喜, 王中平, 董晶亮, 魏永起. 基于COMSOL®模拟材料孔隙率与导热系数的演变关系[J]. 材料导报, 2019, 33(z1): 211-215.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed