Please wait a minute...
材料导报  2021, Vol. 35 Issue (20): 20113-20118    https://doi.org/10.11896/cldb.20080072
  金属与金属基复合材料 |
钒的添加对S30432奥氏体耐热钢影响的研究
涂有旺1, 朱丽慧1, 柯志刚1, 周任远1, 宋明2
1 上海大学材料科学与工程学院,上海 200444
2 中国特种设备检测研究院,北京 100029
Study on the Influence of Vanadium on S30432 Austenitic Heat-resisting Steel
TU Youwang1, ZHU Lihui1, KE Zhigang1, ZHOU Renyuan1, SONG Ming2
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2 China Special Equipment Inspection and Research Institute, Beijing 100029, China
下载:  全 文 ( PDF ) ( 4377KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了添加0.18%的V对S30432奥氏体耐热钢的影响。对比了不含V和含V的S30432钢650 ℃持久断裂时间,测量了固溶态和持久断裂后试样的硬度,利用OM、SEM、TEM和Thermo-Calc软件研究了V对S30432钢析出相的影响,分析了V的加入对S30432耐热钢强度改善的机理。结果表明,在S30432钢中添加0.18% V,延长了其650 ℃持久断裂时间并提高了硬度。含V的S30432钢不仅晶粒变细,而且二次MX相数量更多。特别是,含V的S30432钢存在大量细小的Z相(Cr(Nb,V)N)。这是由于V(C,N)溶解温度较Nb(C,N)低,V的添加促进了MX相的溶解,促使含V的S30432钢优先析出细小的Z相。Z相的析出强化是含V钢硬度和强度增加的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
涂有旺
朱丽慧
柯志刚
周任远
宋明
关键词:  钒元素  S30432耐热钢  强度  Z相    
Abstract: The effect of 0.18% V addition on S30432 austenitic heat-resistant steel was studied in this paper. Creep rupture time at 650 ℃ and hardness before and after crept at 650 ℃ of V-free and V-containing steels were compared. OM, SEM, TEM and Thermo-Calc software were used to study the influence of 0.18% V on the precipitates in S30432 steel. The mechanism of improving strength of V-containing S30432 heat-resistant steel was also analyzed. The results show that the addition of 0.18% V to S30432 steel leads in the increase of creep rupture time at 650 ℃ and hardness. Not only the grains become finer, but also there are more secondary MX particles in V-containing S30432. In particular, a large number of fine Z-phase(Cr(Nb,V)N) precipitate in V-containing S30432 steel. Because the solution temperature of V(C,N) is lower than Nb(C,N), the addition of V accelerates the dissolution of more MX and promotes the precipitation of fine Z-phase in V-containing S30432 steel. The precipitation strengthening of Z-phase is the main reason to improve the hardness and strength of V-containing S30432 steel.
Key words:  vanadium    S30432 heat-resistant steel    strength    Z-phase
               出版日期:  2021-10-25      发布日期:  2021-11-12
ZTFLH:  TG132.3  
基金资助: 国家重点研发计划资助项目(2016YFC0801901);国家自然科学基金资助项目(51171097)
通讯作者:  lhzhu@i.shu.edu.cn   
作者简介:  涂有旺,上海大学硕士研究生,主要从事耐热钢组织和性能方面的研究。
朱丽慧,上海大学教授,博士研究生导师。1998年毕业于西安交通大学,获博士学位。主要从事超临界、超超临界锅炉用耐热钢、硬质合金刀具涂层等相关领域的研究。近三年在Metallurgical and Materials Transactions A, Materials Science and Engineering A, Surface & Coatings Technology等期刊发表学术论文20余篇,申请发明专利1项。与他人合著出版专著《超临界锅炉耐热钢研究》(第二作者,机械工业出版社)。以上海大学第一课题负责人参与完成的“锅炉长周期安全高效运行关键技术及其应用”项目荣获“教育部科学技术进步奖一等奖”(证书号2011-165)。
引用本文:    
涂有旺, 朱丽慧, 柯志刚, 周任远, 宋明. 钒的添加对S30432奥氏体耐热钢影响的研究[J]. 材料导报, 2021, 35(20): 20113-20118.
TU Youwang, ZHU Lihui, KE Zhigang, ZHOU Renyuan, SONG Ming. Study on the Influence of Vanadium on S30432 Austenitic Heat-resisting Steel. Materials Reports, 2021, 35(20): 20113-20118.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080072  或          http://www.mater-rep.com/CN/Y2021/V35/I20/20113
1 Masuyama F. ISIJ International,2001,41(6),612.
2 Wang J Z, Liu Z D, Bao H S, et al. Iron and Steel,2015,50(8),1(in Chinese).
王敬忠,刘正东,包汉生,等.钢铁,2015,50(8),1.
3 Takao K, Sawaragi Y. Sumitomo Search,1993,10,45.
4 Sawaragi Y, Hirano S. Mechanical Behavior Material,1991,4,50.
5 Tan S P, Wang Z H, Cheng S C, et al. Journal of Iron and Steel Research, International,2010,17(5),63.
6 Guo F Q, Cheng S C, Liu Z D, et al. Materials for Mechanical Enginee-ring,2007,8,11(in Chinese).
郭富强,程世长,刘正东,等.机械工程材料,2007,8,11.
7 Ke Z G, Zhu L H, Zhou R Y, et al. Iron and Steel,2020,55(7),95(in Chinese).
柯志刚,朱丽慧,周任远,等.钢铁,2020,55(7),95.
8 Yan X. Influence of trace elements on the microstructure and properties of casting austenite stainless steel. Master’s Thesis, Huazhong University of Science and Technology, China,2004(in Chinese).
严翔.微量元素对铸造奥氏体不锈钢组织和性能的影响.硕士学位论文,华中科技大学,2004.
9 Dae-Bum Park, Moo-Young Huh, Woo-Sang Jung, et al. Journal of Alloys and Compounds,2013,574,532.
10 Dae-Bum Park, Sung-Min Hong, Kyu-Ho Lee, et al. Materials Characterization,2014,93,52.
11 Li X M, Zou Y, Zhang Z W, et al. Materials Science & Technology,2010,18(2),256(in Chinese).
李新梅,邹勇,张忠文,等.材料科学与工艺,2010,18(2),256.
12 Gong Z H, Ding W, Fu X Y. Heat Treatment of Metals,2015,40(5),133(in Chinese).
龚志华,定巍,富小阳.金属热处理,2015,40(5),133.
13 Wang X, Li Y, Chen D X, et al. Materials Science & Engineering A,2019,754,238.
14 Zhang Z F, Bai Y, Lyu Z Q, et al. Iron and Steel,2018,53(3),57(in Chinese).
张志锋,白银,吕知清,等.钢铁,2018,53(3),57.
15 Li J, Wang G L, Xia Y J, et al. Materials Reports,2014,28(7),104(in Chinese).
李杰,王国梁,夏云进,等.材料导报,2014,28(7),104.
16 Zhang K Q, Li J G, Tang G B. Journal of Iron and Steel Research,2018,30(1),54(in Chinese).
张凯强,李激光,唐广波.钢铁研究学报,2018,30(1),54.
17 Wang A D, Wang J Y, Tian L M. Materials for Mechanical Engineering,2016,40(8),23(in Chinese).
王安东,王骏宇,田林茂.机械工程材料,2016,40(8),23.
18 Li H M, Cao J C, Sun L J, et al. Materials Reports A: Review Papers,2010,24(9),84(in Chinese).
李鸿美,曹建春,孙力军,等.材料导报:综述篇,2010,24(9),84.
19 Yong Q L. Second phase in iron and steel, Metallurgical Industry Press, China,2006(in Chinese).
雍岐龙.钢铁材料中的第二相,冶金工业出版社,2006.
20 Hui Y J, Pan H, Zhou N, et al. Acta Metallurgica Sinica,2015,51(12),1481(in Chinese).
惠亚军,潘辉,周娜,等.金属学报,2015,51(12),1481.
21 Jiang J, Zhu L H. Materials Science & Engineering A,2012,539,170.
22 Li J, Tang L Y, Li J, et al. Proceedings of the CSEE,2019,39(22),6640(in Chinese).
李季,唐丽英,李江,等.中国电机工程学报,2019,39(22),6640.
23 Li H, Fang X D, Xu F H, et al. Hot Working Technology,2020,49(14),6(in Chinese).
李慧,方旭东,徐芳泓,等.热加工工艺,2020,49(14),6.
24 Zhang P, Li S X, Zhang Z F. Materials Science & Engineering A,2011,529,62.
25 Chen B C, Li G F, Yang W. Materials for Mechanical Engineering,2009,33(9),37(in Chinese).
陈冰川,李光福,杨武.机械工程材料,2009,33(9),37.
26 Tang B, Zhu L H. Materials for Mechanical Engineering,2015,39(5),19(in Chinese).
唐波,朱丽慧.机械工程材料,2015,39(5),19.
27 Hilmar Kjartansson Danielsen, John Hald. Materials Science & Enginee-ring A,2009,505,169.
28 Cipolla L, Danielse H K, Venditti D, et al. Acta Materialia,2010,58,669.
29 Xu Y T, Zhang X Y, Tian Y B, et al. Materials Characterization,2016,111,122.
[1] 鲁明远, 韩保红, 赫万恒, 倪新华, 于金凤. 孔隙对陶瓷基复合材料强度影响的研究进展[J]. 材料导报, 2021, 35(Z1): 180-185.
[2] 于芳, 晁代义, 邢雷, 王欣, 黄同瑊, 王向杰. 单级时效工艺对7075铝合金包覆薄板力学性能的影响[J]. 材料导报, 2021, 35(Z1): 411-413.
[3] 黄同瑊, 晁代义, 于芳, 张芮源, 周艳艳, 赵晓红, 徐志远. 保温时间对2024包铝薄板元素扩展及力学性能的影响[J]. 材料导报, 2021, 35(Z1): 421-424.
[4] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[5] 丁叁叁, 刘克健. 高速列车用碳纤维复合材料结构损伤修复门槛值研究[J]. 材料导报, 2021, 35(Z1): 613-616.
[6] 张鹏居, 钱钊, 刘相法. Al-B-C晶种合金对6201铝合金导热及力学性能的作用机理分析[J]. 材料导报, 2021, 35(9): 9028-9032.
[7] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[8] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[9] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[10] 李东宇, 李小强, 李京懋, 屈盛官, 徐各清. 烧结工艺对铜铁基含油轴承组织与性能的影响[J]. 材料导报, 2021, 35(8): 8157-8163.
[11] 石玉, 李正宁, 盛捷, 喇培清. 纳米高强钢铁材料增塑研究进展[J]. 材料导报, 2021, 35(7): 7155-7161.
[12] 王凯伟, 曾凯, 刑保英, 易金权. DP780高强钢胶接点焊过程声发射信号特征及接头强度预测[J]. 材料导报, 2021, 35(6): 6157-6160.
[13] 吴凡, 杨发光, 肖柏林, 杨志强, 高谦. 钢渣掺量对膏体早期强度及流变特性的影响[J]. 材料导报, 2021, 35(3): 3021-3025.
[14] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[15] 何晓雁, 张智鑫, 赵燕茹, 郝贠洪, 秦立达. 基于灰靶决策对BFCC力学性能及抗渗性能的评估[J]. 材料导报, 2021, 35(20): 20035-20039.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed