Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20040218-10    https://doi.org/10.11896/cldb.20040218
  高分子与聚合物基复合材料 |
生物酶与化学催化剂结合在合成手性化合物中的应用
张媛媛, 温叶倩
河北工业大学化工学院,天津 300130
Application of Biological Enzyme and Chemical Catalyst in Synthesis of Chiral Compounds
ZHANG Yuanyuan, WEN Yeqian
School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
下载:  全 文 ( PDF ) ( 4137KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 手性化合物在医药、材料等领域展现了其独特的优势。为了满足各界对光学纯手性化合物的需求,各种合成方法得到了较快的发展,其中化学酶和多酶参与的催化循环因其对环境友好、选择性高、条件温和等优点而受到越来越多的重视。本文综述了合成光学纯化合物的循环网络的最新进展并对其今后的发展方向进行了展望,其中包括三种方法。(1)动态动力学拆分法(DKR):大部分研究工作集中在对仲醇的拆分,特别是芳香类仲醇,而发展适用于胺化合物的DKR的催化体系仍然是科研工作者们的重要任务。(2)少量对映体回收方法(MER):手性合成领域的一种新的反应模式,已经成功应用于手性氰醇酯类化合物、环状手性胺化合物的合成。(3)环消旋法(CyD):是合成手性胺的一种具有吸引力的方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张媛媛
温叶倩
关键词:  手性化合物    外消旋化  循环    
Abstract: Chiral compounds have already presented unique advantages in many fields, such as medicine field, material field, etc. In face of the increasingly requirements for optical pure compounds, many methods have been developed. Among them, catalytic cycle involving chemical enzyme and multienzyme attracted more and more attention due to the advantages of environment-friendly process, high selectivity, and mild conditions. In this paper, the latest development of the cyclic network for the synthesis of optically pure compounds is reviewed, including three methods. (1) Dynamic kinetic resolution (DKR): most of the research work focused on the resolution of secondary alcohols, especially aromatic secondary alcohols. However, chiral resolution of anines is still challenging problems. (2) Minor enantiomer recycling (MER): it is a new reaction mode in the field of chiral synthesis and has been successfully applied to the synthesis of chiral cyanohydrin esters and cyclic chiral amines. (3) Cyclic deracemisation (CyD): this is an attractive method for the synthesis of chiral amines.
Key words:  chiral compound    lipase    racemization    cycle
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  O622.3  
  O622.6  
基金资助: 国家自然科学基金(21606069);河北省自然科学基金(B2017202187)
通讯作者:  wenyq@hebut.edu.cn20040218-1   
作者简介:  张媛媛,河北工业大学化工学院硕士研究生。2017年于邢台学院应用化学专业本科毕业,2020年于河北工业大学化工学院有机化学专业硕士毕业。主要从事不对称催化合成研究。温叶倩,河北工业大学化工学院副教授,硕士研究生导师。2005年于河北工业大学应用化学专业本科毕业,2011年于大连理工大学精细化工国家重点实验室应用化学专业博士毕业,2012和2013年在瑞典皇家工学院有机化学专业从事博士后。目前从事不对称催化合成、高分子材料合成、生物质利用等方面的研究工作,在Catalysis Science & Technology、Applied Catalysis A, General、the Journal of Organic Chemistry、Diamond & Related Materials等期刊上发表多篇论文。
引用本文:    
张媛媛, 温叶倩. 生物酶与化学催化剂结合在合成手性化合物中的应用[J]. 材料导报, 2022, 36(2): 20040218-10.
ZHANG Yuanyuan, WEN Yeqian. Application of Biological Enzyme and Chemical Catalyst in Synthesis of Chiral Compounds. Materials Reports, 2022, 36(2): 20040218-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040218  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20040218
1 Zhai F, Feng Y, Zhou K, et al. Journal of Materials Chemistry C, 2019, 7, 2146.
2 Zhuang T T, Li Y, Gao X, et al. Nature Nanotechnology, 2020, 15, 192.
3 De Miranda A S, Miranda L S M, De Souza R O M A. Biotechnology Advances, 2015, 33(5), 372.
4 Yang Y, Zhang J, Wu D, et al. Biotechnology Advances, 2014, 32(3), 642.
5 Lee J H, Han K, Kim M J, et al. European Journal of Organic Chemistry, 2010, 2010(6), 999.
6 Dinh P M, Howarth J A, Hudnott A R, et al. Tetrahedron Letters, 1996, 37(42), 7623.
7 Larsson A L E, Persson B A, Bäckvall J E. Angewandte Chemie International Edition in English, 1997, 36(11), 1211.
8 Lee J H, Kim N, Kim M J, et al. ChemCatChem, 2011, 3(2), 354.
9 Mavrynsky D, Päiviö M, Lundell K, et al. European Journal of Organic Chemistry, 2010, 2009(9), 1317.
10 Fernández-Salas J A, Manzini S, Nolan S P. Chemistry-A European Journal, 2014, 20(41), 13132.
11 Do Y, Hwang I C, Kim M J, et al. The Journal of Organic Chemistry, 2010, 75(16), 5740.
12 Päiviö M, Mavrynsky D, Leino R, et al. European Journal of Organic Chemistry, 2011, 2011(8), 1452.
13 Merabet-Khelassi M, Vriamont N, Aribi-Zouioueche L, et al. Tetrahedron: Asymmetry, 2011, 22(18-19), 1790.
14 Sato Y, Kayaki Y, Ikariya T. Chemical Communications, 2012, 48(30), 3635.
15 Dinh P M, Howarth J A, Hudnott A R, et al. Tetrahedron Letters, 1996, 37(42), 7623.
16 El-Sepelgy O, Alandini N, Rueping M. Angewandte Chemie International Edition, 2016, 55(43), 13602.
17 El-Sepelgy O, Brzozowska A, Rueping M. ChemSusChem, 2017, 10(8), 1664.
18 Berkessel A, Sebastian-Ibarz M L, Müller T N. Angewandte Chemie International Edition, 2006, 45(39), 6567.
19 Wuyts S, Wahlen J, Jacobs P A, et al. Green Chemistry, 2007, 9(10), 1104.
20 Akai S, Tanimoto K, Kanao Y, et al. Angewandte Chemie International Edition, 2006, 45(16), 2592.
21 Akai S, Hanada R, Fujiwara N, et al. Organic Letters, 2010, 12(21), 4900.
22 Egi M, Sugiyama K, Saneto M, et al. Angewandte Chemie International Edition, 2013, 52(13), 3654.
23 Sugiyama K, Oki Y, Kawanishi S, et al. Catalysis Science & Technology, 2016, 6(13), 5023.
24 Cao H, Zhu X H, Wang D, et al. ACS Catalysis, 2015, 5(1), 27.
25 El-Sepelgy O, Alandini N, Rueping M. Angewandte Chemie International Edition, 2016, 128, 13800.
26 Rawlings A J, Diorazio L J, Wills M. Organic Letters, 2015, 17(5), 1086.
27 Yan T, Feringa B L, Barta K. ACS Catalysis, 2015, 6(1), 381.
28 Trieu-Tien T, Delphine S M, Albert P, et al. Chemistry, 2015, 46(37), 7066.
29 Gustafson K P J, Guemundsson A, Lewis K, et al. Chemistry-A European Journal, 2017, 23(5), 1048.
30 Yang Q, Zhang N, Liu M, et al. Tetrahedron Letters, 2017, 58(25), 2487.
31 Yun I, Park J Y, Park J, et al. The Journal of Organic Chemistry, 2019, 84(24), 16293.
32 Hilker I, Rabani G, Verzijl G K M, et al. Angewandte Chemie International Edition, 2006, 45(13), 2130.
33 Zhang Y, Zhu Q, Fei Z, et al. European Polymer Journal, 2019, 119, 52.
34 Yang Q, Zhao F, Zhang N, et al. Chemical Communications, 2018, 54(100), 14065.
35 Murahashi S, Yoshimura N, Tsumiyama T, et al. Journal of the American Chemical Society, 1983, 105(15), 5002.
36 Reetz M T, Schimossek K. CHIMIA International Journal for Chemistry, 1996, 50(12), 668.
37 Engström K, Johnston E V, Verho O, et al. Angewandte Chemie International Edition, 2013, 52(52), 14006.
38 Filice M, Marciello M, del Puerto Morales M, et al. Chemical Communications, 2013, 49(61), 6876.
39 Xu Y, Wang M, Feng B, et al. Catalysis Science & Technology, 2017, 7(24), 5838.
40 Gao S, Wang Z, Ma L, et al. ACS Catalysis, 2020, 10 (2), 1375.
41 Li X, Cao Y, Luo K, et al. Nature Catalysis, 2019, 2(8), 718.
42 Strauss U T, Faber K. Tetrahedron: Asymmetry, 1999, 10(21), 4079.
43 Asukawa K, Hasemi R, Asano Y. Advanced Synthesis & Catalysis, 2011, 353(13), 2328.
44 Musa M M, Patel J M, Nealon C M, et al. Journal of Molecular Catalysis B: Enzymatic, 2015, 115, 155.
45 Karume I, Musa M M, Bsharat O, et al. RSC advances, 2016, 6(99), 96616.
46 Popnoński J, Reiter T, Kroutil W. ChemCatChem, 2018, 10(4), 763.
47 Musa M M, Hollmann F, Mutti F G. Catalysis Science & Technology, 2019, 9(20), 5487.
48 Wingstrand E, Laurell A, Fransson L, et al. Chemistry-A European Journal, 2009, 15(44), 12107.
49 Moberg C. Accounts of Chemical Research, 2016, 49(12), 2736.
50 Moberg C. Pure and Applied Chemistry, 2016, 88(4), 309.
51 Lundgren S, Wingstrand E, Penhoat M, et al. Journal of the American Chemical Society, 2005, 127(33), 11592.
52 Hamberg A, Lundgren S, Penhoat M, et al. Journal of the American Chemical Society, 2006, 128(7), 2234.
53 Laurell A, Moberg C. European Journal of Organic Chemistry, 2011, 2011(20-21), 3980.
54 Wen Y Q, Hertzberg R, Gonzalez I, et al. Chemistry, 2014, 20(13), 3806.
55 Hertzberg R, Moberg C. The Journal of Organic Chemistry, 2013, 78(18), 9174.
56 Hertzberg R, Dinér P, Moberg C. Synthesis, 2016, 48(19), 3175.
57 Hertzberg R, Monreal S G, Moberg C. The Journal of Organic Chemistry, 2015, 80(5), 2937.
58 Guo X, Okamoto Y, Schreier M R, et al. Chemical Science, 2018, 9(22), 5052.
59 Aranda C, Oksdath-Mansilla G, Bisogno F, et al. Advanced Synthesis & Catalysis. 2020, 362 (6), 1233.
60 Schmermund L, Jurkaš V, Özgen F F, et al. CS Catalysis, 2019, 9(5), 4115.
61 Rudroff F, Mihovilovic M D, Gröger H, et al. Nature Catalysis, 2018, 1(1), 12.
62 Wen Y Q, Hertzberg R, Moberg C E. The Journal of Organic Chemistry, 2014, 79(13), 6172.
63 Seel C J, Gulder T. ChemBioChem, 2019, 20(15), 1871.
64 Gong R, Yao P, Chen X, et al. ChemCatChem, 2018, 10(2), 387.
65 Yao P, Cong P, Gong R, et al. ACS Catalysis, 2018, 8(3), 1648.
66 Cosgrove S C, Hussain S, Turner N J, et al. ACS Catalysis, 2018, 8(6), 5570.
67 Aleku G A, Mangas-Sanchez J, Citoler J, et al. ChemCatChem, 2018, 10(3), 515.
68 Nosek V, Míšek J. Angewandte Chemie International Edition, 2018, 57(31), 9849.
[1] 王伟, 孙文磊, 张志虎, 于江通, 黄海博, 王杨宵, 肖奇. 激光二次扫描熔覆涂层组织演变规律及数值模拟研究[J]. 材料导报, 2022, 36(2): 20090204-7.
[2] 欧珊, 牟自豪, 林涛, 李瑶, 冯威, 刘文龙. 两步法制备碳化钛薄膜及其电容性能[J]. 材料导报, 2021, 35(z2): 18-21.
[3] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[4] 梁晓前, 黄榜彪, 黄秉章, 杨雷铭, 孙文贤, 林通敏, 任志强, 李有的, 刘灏. 基于孔结构的蒸压加气混凝土的冻融循环耐久性试验研究[J]. 材料导报, 2021, 35(z2): 200-204.
[5] 徐冉, 李智慧, 吴一楠, 李风亭. 金属有机骨架材料固定化酶的研究进展[J]. 材料导报, 2021, 35(z2): 285-293.
[6] 杨帅, 刘施峰, 张静, 柳亚辉, 邓超, 祝佳林. 电解液的循环使用对阳极氧化Ta2O5纳米管形貌的影响[J]. 材料导报, 2021, 35(Z1): 112-115.
[7] 戴文亭, 刘丹丹, 郭威, 李颖松, 安胤. 冻融循环条件下硅烷偶联剂改性泡沫沥青混合料的损伤特性[J]. 材料导报, 2021, 35(Z1): 264-268.
[8] 陈健, 顾晨宇, 杨宁, 邱天, 徐杰, 陈翔宇, 朱帅, 焦齐统, 潘炜, 刘晶晶. LaNi5.5Sn1.5-C-Si合金优异的长期吸/放氢循环性能[J]. 材料导报, 2021, 35(4): 4112-4117.
[9] 李世健, 崔振杰, 李文韬, 王东, 王志. 钕铁硼废料循环利用技术现状与展望[J]. 材料导报, 2021, 35(3): 3001-3009.
[10] 卢喆, 王社良, 王善伟, 姚文娟, 刘博, 闫强强. 氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法[J]. 材料导报, 2021, 35(3): 3033-3040.
[11] 郝喜娟, 赵沈飞, 张春媚, 胡芳馨, 杨鸿斌, 郭春显. 基于纳米仿生酶构建电化学生物传感器用于活性氧检测[J]. 材料导报, 2021, 35(3): 3183-3193.
[12] 陈欢, 汪宗涛, 陈仕清, 范东斌. 木质素环氧化接枝物及其制备大豆蛋白胶黏剂研究[J]. 材料导报, 2021, 35(20): 20190-20194.
[13] 戈明亮, 李越颖, 梁国栋. 纳米酶在传感检测中的应用研究进展[J]. 材料导报, 2021, 35(19): 19195-19203.
[14] 范文琦, 潘登, 黄亮, 王强. 工业固废和廉价矿石制备高循环稳定性高温CO2捕集材料的研究进展[J]. 材料导报, 2021, 35(17): 17090-17102.
[15] 张峙, 李飞, 胡琳琪, 郑安应, 佘跃惠, 张文达. 油气工业生物及化学硫化氢清除剂研究进展[J]. 材料导报, 2021, 35(17): 17185-17189.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed