Please wait a minute...
材料导报  2019, Vol. 33 Issue (24): 4051-4055    https://doi.org/10.11896/cldb.18070211
  无机非金属及其复合材料 |
Li-LSX分子筛的离子改性及氧氩吸附分离性能
杨富帮1,2,†, 邓橙2,†, 邓宇1, 马军2, 刘圣军2, 朱孟府2
1 天津科技大学化工与材料学院,天津 300457
2 军事科学院系统工程研究院卫勤保障技术研究所,天津 300161
Ion Modification and Oxygen-argon Adsorption Separation Performance of Li-LSX Molecular Sieves
YANG Fubang1,2,†, DENG Cheng2,†, DENG Yu1, MA Jun2, LIU Shengjun2, ZHU Mengfu2
1 College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457
2 Institute of Medical Support Technology, Academy of Military Sciences PLA, Tianjin 300161
下载:  全 文 ( PDF ) ( 2667KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了探究不同价态阳离子改性Li-LSX分子筛对其氧氩吸附分离性能的影响,采用水溶液离子交换法分别以Ag+、Ca2+、Ce3+为阳离子交换剂制备AgLi-LSX、CaLi-LSX、CeLi-LSX分子筛。通过扫描电镜(SEM)、透射电镜(TEM)、红外光谱(FT-IR)、X射线衍射(XRD)、X射线能谱分析(EDS)、拉曼光谱(Raman)、比表面积分析(BET)等技术手段对分子筛的骨架结构、晶体构型、元素含量、孔结构进行表征分析,考察了改性分子筛的氧氩吸附分离性能。研究结果表明,改性后分子筛的骨架结构、晶体构型没有改变,仍为X型分子筛。在25 ℃下测定分子筛的氧气和氩气吸附量,CeLi-LSX、CaLi-LSX、AgLi-LSX分子筛的氧气吸附量分别为4.978 6 mL·g-1、4.042 7 mL·g-1、2.975 5 mL·g-1,且三种分子筛的氩气吸附量相近,这表明CeLi-LSX分子筛是一种较好的氧氩吸附分离材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨富帮
邓橙
邓宇
马军
刘圣军
朱孟府
关键词:  Li-LSX  AgLi-LSX  CaLi-LSX  CeLi-LSX  离子改性  氧氩吸附分离    
Abstract: Aiming at exploring the effect of modified Li-LSX molecular sieves with diverse valence cation on their oxygen-argon adsorption and separation performance, aqueous solution ion exchange process was employed to prepare AgLi-LSX, CaLi-LSX and CeLi-LSX molecular sieves, with Ag+, Ca2+ and Ce3+ as cationic exchange agents, respectively. Then, the framework structure, crystal configuration, element content and pore structure of the modified molecular sieves were characterized by SEM, TEM, FT-IR, XRD, EDS, Raman and BET technique, and the oxygen-argon adsorption and separation performance of the modified molecular sieves were measured as well. The results indicated that the modified molecular sieves held the same framework structure and crystal configuration with the original molecular sieve, still showing X type. The adsorption amounts of the modified sieves on the oxygen and argon were measured under 25 ℃. As could be seen from the results, CeLi-LSX, CaLi-LSX, AgLi-LSX molecular sieves showed the oxygen adsorption amounts of 4.978 6 mL·g-1, 4.042 7 mL·g-1, 2.975 5 mL·g-1, respectively, and similar argon adsorption ability. It can be concluded that CeLi-LSX molecular sieve is a favorable materials for oxygen-argon adsorption and separation.
Key words:  Li-LSX    AgLi-LSX    CaLi-LSX    CeLi-LSX    ion modification    oxygen-argon adsorption separation
               出版日期:  2019-12-25      发布日期:  2019-10-29
ZTFLH:  TQ174  
基金资助: 军事医学创新工程专项(16CXZ038);国家重点研发计划(2017YFC0806403)
作者简介:  杨富帮,硕士研究生,就读于天津科技大学化工与材料学院,化学工程专业,研究方向为功能材料;邓橙,军事科学院卫勤保障技术研究所副研究员,2003年于四川大学材料科学与工程专业获工学学士学位;2003年9月至2010年1月,在国防科学技术大学材料科学与工程专业获工学硕士和博士学位。以第一或通讯作者在国内外学术期刊上发表论文30余篇,获国家专利授权21项;并担任多个学术期刊的审稿人。研究工作主要围绕无机功能性膜材料与水处理技术的基础理论和应用,主持包括国家自然科学基金、天津市科技支撑计划重点项目,参与国家重点研发计划、全军十二五重大项目等。现担任中国海水淡化与水再利用学会青年专家委员会委员;马军,军事科学院卫勤保障技术研究所高级工程师。主要从事分离工程技术与装备研究工作,特别是制氧、制水领域工艺技术及关键元器件的研究与应用。近年来主持和参加国家、军队及天津市重点课题10余项,发表研究论文20余篇,获国家专利20余项,主持和参与研制的多项装备得到较为广泛的应用。
引用本文:    
杨富帮, 邓橙, 邓宇, 马军, 刘圣军, 朱孟府. Li-LSX分子筛的离子改性及氧氩吸附分离性能[J]. 材料导报, 2019, 33(24): 4051-4055.
YANG Fubang, DENG Cheng, DENG Yu, MA Jun, LIU Shengjun, ZHU Mengfu. Ion Modification and Oxygen-argon Adsorption Separation Performance of Li-LSX Molecular Sieves. Materials Reports, 2019, 33(24): 4051-4055.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070211  或          http://www.mater-rep.com/CN/Y2019/V33/I24/4051
1 Bu L B, Liu Y S, Liu W H, et al. Journal of University of Science and Technology Beijing, 2006, 28(10), 989(in Chinese).卜令兵, 刘应书, 刘文海, 等. 北京科技大学学报, 2006, 28(10), 989.2 Sebastian J, Jasra R V. Industrial and Engineering Chemistry Research, 2005, 44(21),8014.3 Santos J C, Cruz P, Regala T, et al. Industrial and Engineering Chemistry Research, 2007, 46(2), 591.4 Weinberger B, Lamari F D, Kayiran S B, et al. AICHE Journal, 2010, 51(1), 142.5 Zuo R, Liang X P, Zhu M F, et al. Materials Review B: Research Papers, 2013, 27(10), 40(in Chinese).左蕊, 梁小平, 朱孟府, 等. 材料导报: 研究篇, 2013, 27(10),40.6 Tang F S, Zhao H, Liu J, et al. Journal of Molecular Catalysis, 2015, 29(3), 256(in Chinese).唐富顺, 赵辉, 刘津, 等. 分子催化, 2015, 29(3), 256.7 Cavenati S, Grande C A, Lopes F V S, et al. Microporous and Mesoporous Materials, 2009, 121(1-3), 114.8 Yang R, THutson N D, Reisner B A, et al. Chemistry of Materials, 2000, 12(10), 3020.9 Guan L L, Duan L Y, Xie Y C. Acta Physico-Chimica Sinica, 2002, 18(11), 998(in Chinese).关莉莉, 段连运, 谢有畅. 物理化学学报, 2002, 18(11), 998.10 Kong F T, Jing X, Jie C, et al. Journal of Catalysis, 2010, 274(2), 121.11 Fang Y T, Guo J H, Li D Y, et al. Journal of Chemical Industry and Engineering, 2011, 62(6), 1581(in Chinese).方玉堂, 郭敬花, 李大艳, 等. 化工学报, 2011, 62(6), 1581.12 Xu N C, Hong T Z, Liu Z, et al. Materials Review B: Research Papers, 2017, 31(6), 45(in Chinese).许乃才, 洪天增, 刘忠, 等. 材料导报:研究篇, 2017, 31(6),45.13 Mosca A, Hedlund J, Webley P A, et al. Microporous and Mesoporous Materials, 2010, 130(1), 38..14 Jiang M M, Zhu M F, Deng C, et al. Applied Chemical Industry, 2017, 46(2), 332(in Chinese).江明明, 朱孟府, 邓橙, 等. 应用化工, 2017, 46(2), 332.15 Huang H M, Fan M G, Zhang F Y, et al. Modern Chemical Industy, 2012, 32(5), 54(in Chinese).黄晗名, 范闽光, 张飞跃, 等. 现代化工, 2012, 32(5), 54.16 Liu C L, Bi F F, Zhang W J, et al. Journal of Materials Engineering, 2016, 44(12),22(in Chinese).刘春玲, 毕菲非, 张文杰, 等. 材料工程, 2016, 44(12),22.17 Wang C R. Mining and Metallurgy, 2011, 20(2), 52(in Chinese).王春蓉. 矿冶, 2011, 20(2),52.18 Xiong G, Yu Y, Feng Z C, et al. Microporous and Mesoporous Materials, 2001, 42(2-3), 317.19 Liu Z J, Liang H Q, Wang J Y. The Journal of Light Scattering, 2009, 21(1), 1(in Chinese).刘照军, 梁会琴, 王金艳. 光散射学报, 2009, 21(1), 1.
[1] 仇中柱, 李晟南, 魏丽东, 秦承芳, 姚远, 姜未汀, 郑莆燕, 张涛. 相变微胶囊悬浮液中颗粒润湿性对导热系数的影响[J]. 材料导报, 2019, 33(Z2): 623-626.
[2] 林昇华, 张景, 艾玲, 鲁越晖, 王林军, 宋伟杰. 光伏玻璃减反射膜的研究进展[J]. 材料导报, 2019, 33(21): 3588-3595.
[3] 李红霞, 李保卫, 邓磊波, 徐鹏飞, 刘中兴. 微波热处理温度对尾矿微晶玻璃晶化过程及性能的影响[J]. 材料导报, 2019, 33(20): 3401-3407.
[4] 赵文玉, 易赋淘, 甘慧慧, 张会宁, 钱勇兴, 靳慧霞, 张科锋. 氯掺杂g-C3N4纳米片光催化氧化染料污染物与还原六价铬的协同处理研究[J]. 材料导报, 2019, 33(20): 3377-3382.
[5] 赵林艳, 席晓丽, 樊佑书, 马立文. 纳米氧化钨的水热/溶剂热法制备及应用的综述[J]. 材料导报, 2019, 33(19): 3203-3209.
[6] 李佳琪, 刘光华, 吴晓明, 贺刚, 杨增朝, 李江涛. 混料方式对燃烧合成Cu2Se的热电性能的影响[J]. 材料导报, 2019, 33(18): 3147-3151.
[7] 王洁,赵萍,吕冰海,张韬杰,黄晟,杭伟,袁巨龙. 用于功能陶瓷材料超精密平面加工的固结磨具的研究进展[J]. 材料导报, 2019, 33(17): 2873-2881.
[8] 种小川,肖国庆,丁冬海,白冰. 碳化硼粉体合成方法的研究进展[J]. 材料导报, 2019, 33(15): 2524-2531.
[9] 王耿, 傅邱云, 张芦, 施浩, 田帆. 钡镧钛系高介低损耗微波介质陶瓷研究进展[J]. 材料导报, 2019, 33(13): 2151-2158.
[10] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[11] 孙亚兵, 包兆先, 霍子伟, 杨玲, 许积文, 周昌荣, 王华. (Bi0.5Na0.5)0.94Ba0.06Ti1-x(Yb0.5Nb0.5)xO3无铅陶瓷的结构,储能、应变、介电及阻抗性能研究[J]. 材料导报, 2019, 33(z1): 171-177.
[12] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[13] 杨万利, 代丽娜, 樊振宁, 张瀚晨, 史忠旗. PAS烧结SiC/h-BN复相陶瓷的韧性表征[J]. 材料导报, 2019, 33(8): 1272-1275.
[14] 张晶, 李红霞, 刘国齐. 高能球磨-盐辅助氮化低温合成α-Si3N4粉体[J]. 材料导报, 2019, 33(5): 739-743.
[15] 肖国庆, 周盼, 丁冬海. 熔盐对ZrO2纤维模板辅助燃烧合成ZrB2纤维的影响[J]. 材料导报, 2018, 32(22): 3875-3879.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed