Study of WC Microalloying Behavior and Tribological Property of Homogeneous Laser Cladding Layer on H13 steel
CHANG Gengrong1, LIU Mingxia1, MENG Yu1, GUO Yan2, Ma Dayan3, LI Shiliang4, XU Kewei1,3,*
1 Shaanxi Key Laboratory of Surface Engineering and Remanufacturing, Xi’an University, Shaanxi, Xi’an 710065, China 2 Huadian Electric Power Research Institute Co., Ltd., Hangzhou 710000, China 3 State-Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China 4 Shaanxi Tianyuan Intelligent Remanufacturing Co., Ltd., Xi’an 710018, China
Abstract: The homogeneous laser cladding layers with different tungsten carbide (WC) contents were fabricated on the H13 steel, and the microstructure characteristics and tribological properties were studied. The microstructure and the law of phase evolution were investigated by X-ray diffractometer, scanning electron microscope. The tribological property and hardness characteristics of laser cladding layers were analyzed by tribometer, laser scanning confocal microscope and microhardness tester. The effects of various WC contents on the microstructure and tribological properties of different cladding layers was investigated, and the correlation between microstructure and tribological properties was clarified. Results indicated that the homogeneous laser cladding layer achieved excellent metallurgical combination with the matrix, and the outer contour of WC particles reacted with the homogeneous powder to produce micro-alloyed reinforcement. Besides, the phase of cladding layers was transformed from primary ferrite to austenite, and formed new hard phases with network dispersed at grain boundaries, which can refine grains as well as strengthen grain-boundary. The hard phases induce “cobblestone” effect and obtain a high hardness of 1 104HV, friction coefficient lower than 0.51, the specific wear rate lower than 2.24×10-8 mm3/(N·m). Overall, the wear resistance was 17.62 times higher than that of the matrix, which effectively improves the wear resistance of H13 steel surface.
1 Zhu J, Zhang Z H, Xie J X. Materials Science and Engineering A, 2019, 752, 101. 2 Mahdi K, Kaveh M A, Farzad K. Cryogenics, 2011, 51, 55. 3 Jungsub L, Jungho C, Junhyeok P, et al. Materials Characterization, 2019, 155, 109817. 4 Pan X H, Zhu Z C. Die Mould Manufacture, 2006(4), 78 (in Chinese). 潘晓华, 朱祖昌, 模具制造, 2006(4), 78. 5 Wu Q W. Study on microstructures and properties of PPD+PVD compound treatment on H13 steel. Master's Thesis, Jilin University, China, 2019 (in Chinese). 吴庆文. H13钢表面PPD+PVD复合处理及组织性能研究. 硕士学位论文, 吉林大学, 2019. 6 Pan Y J, Wu X J, Li P S, et al. Heat Treatment of Metals, 2003, 25 (8), 7 (in Chinese). 潘应君, 吴新杰, 李平生, 等. 金属热处理. 2003, 25 (8), 7. 7 Huang Y, Cheng G G, Li S J, et al. Acta Metallurgica Sinica, 2019, 55 (12), 1487 (in Chinese). 黄宇, 成国光, 李世健, 等. 金属学报, 2019, 55 (12), 1487. 8 Wang Y J. Study on microstructure and wear resistance of H13 gradient coating sprayed by supersonic flame. Master's Thesis, Yanshan University, China, 2019 (in Chinese). 王依敬. H13表面超音速火焰喷涂梯度涂层组织与耐磨性研究. 硕士学位论文, 燕山大学, 2019. 9 Li H B, Wang Y J, Gu Y F, et al. Journal of Yanshan University, 2017, 41(6), 496 (in Chinese). 李洪波, 王依敬, 顾勇飞, 等. 燕山大学学报, 2017, 41(6), 496. 10 Shu F Y, Wang B, Zhao H Y, et al. Journal of Thermal Spray Technology, 2020, 29, 789. 11 Yuan X, Wang J, Zhu Q H, et al. Transactions of the China Welding Institution, 2018, 39(12), 1105 (in Chinese). 员霄, 王井, 朱青海, 等. 焊接学报, 2018, 39(12), 1105. 12 Lu J Z, Cao J, Lu H F, et al. Surface & Coatings Technology, 2019, 369, 228. 13 Liu D J, Li L Q, Li F Q, et al. Surface & Coatings Technology, 2008, 202, 1771. 14 Ye S Y, Liu J Y, Yang W. Hot Working Technology, 2016, 45(6), 193 (in Chinese). 叶四友, 刘建永, 杨伟. 热加工工艺, 2016, 45(6), 193. 15 Zhang H, Lu Y Y, Wang T, et al. Journal of Materials Engineering, 2019, 47(4), 127 (in Chinese). 张航, 路媛媛, 王涛, 等. 材料工程, 2019, 47(4), 127. 16 Chen H, Lu Y Y, Sun Y S, et al. Surface & Coatings Technology, 2020, 395, 125867. 17 Ramesh C S, Srinivas C K, Channabasappa B H. Wear, 2009, 267(11), 1777. 18 Ortiz A, García A, Cadenas M, et al. Surface & Coatings Technology, 2017, 324, 298. 19 Wu P, Zhou C C, Tang X N. Acta Metallurgica Sinica, 2002, 38(12), 1257 (in Chinese). 吴萍, 周昌炽, 唐西南, 金属学报, 2002, 38(12), 1257 20 Huang L, Zhou J Z, Xu J L, et al. Applied Laser, 2019, 39(4), 556 (in Chinese). 黄蕾, 周建忠, 徐家乐, 等, 应用激光, 2019, 39(4), 556. 21 Zhang J Y, Qiu C J, He Y W, et al. Surface Technology, 2017, 46(6), 221 (in Chinese). 张净宜, 邱长军, 贺沅玮, 等. 表面技术, 2017, 46(6), 221. 22 Tong W H, Zhang X Y, Li W X, et al. Acta Metallurgica Sinica, 2020, 56(9), 1265 (in Chinese). 童文辉, 张新元, 李为轩, 等. 金属学报, 2020, 56(9), 1265. 23 Yang G R, Song W M, Wang J R, et al. Materials Reports, 2018, 32(6), 924 (in Chinese). 杨贵荣, 宋文明, 王建儒, 等. 材料导报, 2018, 32(6), 924. 24 Mao H D, Zhang D W. The study of controlling cracks in laser clad la-yer. Ph. D. Thesis, Tianjin University, 2007 (in Chinese). 毛怀东, 张大卫. 激光熔覆层裂纹控制方法与实践. 博士学位论文, 天津大学, 2007 25 Wang J D, Li L Q, Tao W. Optics and Laser Technology, 2016, 82, 170. 26 Huang L J, Geng L. Research on the titanium matrix composites with a quasi-continuous network reinforcement distribution. Ph. D. Thesis, Harbin Institute of Technology, China, 2010(in Chinese). 黄陆军, 耿林. 增强体准连续网状分布钛基复合材料研究. 博士学位论文, 哈尔滨工业大学, 2010. 27 Telasang G.Surface & Coating Technology. 2014, 258, 1108. 28 Ye S Y, Liu J Y, Yang W. Surface Technology, 2015, 44(8), 81 (in Chinese). 叶四友, 刘建永, 杨伟. 表面技术, 2015, 44(8), 81 29 Lv X R, Ma X W, Dong L H, et al. Journal of Functional Materials, 2020, 51(6), 06034 (in Chinese). 吕晓仁, 马孝威, 董丽虹, 等. 功能材料, 2020, 51(6), 06034. 30 Wu L, Pu J, Wu M F, et al. Materials Reports, 2021, 35(16), 16111 (in Chinese). 吴磊, 浦娟, 吴铭方, 等. 材料导报, 2021, 35(16), 16111.