Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 24110106-5    https://doi.org/10.11896/cldb.24110106
  无机非金属及其复合材料 |
掺CeO2稀土钽酸盐陶瓷材料的性能研究
李凌锋1, 司瑶晨1, 王瑞达1, 刘广华2, 赵世贤1,*, 李红霞1, 李虹屿1
1 中钢集团洛阳耐火材料研究院有限公司先进耐火材料全国重点实验室,河南 洛阳 471039
2 中国联合重型燃气轮机技术有限公司,北京 100016
Study on Properties of CeO2-doped Rare Earth Tantalate Ceramics
LI Lingfeng1, SI Yaochen1, WANG Ruida1, LIU Guanghua2, ZHAO Shixian1,*, LI Hongxia1, LI Hongyu1
1 State Key Laboratory of Advanced Refractories, Sinosteel Luoyang Institute of Refractories Research Co., Ltd., Luoyang 471039, Henan, China
2 China United Gas Turbine Technology Co.,Ltd., Beijing 100016, China
下载:  全 文 ( PDF ) ( 28250KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 先进航空发动机对热障涂层的服役温度以及抗侵蚀性能有着更高的要求,氧化锆由于其高温红外穿透及高温相变等无法满足日益发展的需要,目前稀土钽酸盐掺杂陶瓷材料作为潜在的高温热障涂层材料而广受关注。本工作提出以四价的氧化铈(CeO2)按不同比例掺杂于(Y0.5Gd0.5)TaO4材料体系中,通过高温固相反应在1 750 ℃保温5 h,制备单斜相掺CeO2稀土钽酸盐氧化物。研究了该材料的热学和力学性能、显微结构及抗CaO-MgO-Al2O3-SiO2(CMAS)侵蚀性能。结果表明:①掺CeO2稀土钽酸盐陶瓷材料具有低的热导率(1.55 W·m-1·K-1)。②掺CeO2稀土钽酸盐陶瓷材料存在铁弹相变,有助于提高材料的断裂韧性。③较低的脆性指数(1.33 μm-1/2)提高了试样的损伤容限,阻碍材料的变形以及裂纹的扩展。④掺CeO2稀土钽酸盐材料具有优异的抗CMAS侵蚀性能。⑤掺CeO2稀土钽酸盐陶瓷材料是一种极具应用潜力的新型热障涂层材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李凌锋
司瑶晨
王瑞达
刘广华
赵世贤
李红霞
李虹屿
关键词:  热障涂层  钽酸盐陶瓷  (Y0.5Gd0.5)TaO4  CeO2掺杂  热学性能  力学性能  抗CMAS侵蚀    
Abstract: In order to meet the requirements of advanced aero engines for higher service temperature and better corrosion resistance of thermal barrier coatings, monochloric phase doped CeO2 rare earth tantalate oxides were prepared by doping cerium oxide (CeO2) in (Y0.5Gd0.5)TaO4 material system with different doping ratios, and were held at 1 750 ℃ for 5 h by high temperature solid phase reaction.The thermodynamic pro-perties, microstructure and corrosion resistance of the material to CaO-MgO-Al2O3-SiO2 (CMAS) were studied.The results show that: (ⅰ) Doped CeO2 high entropy rare earth tantalate ceramic material has low thermal conductivity (1.55 W·m-1·K-1).(ⅱ) Doped CeO2 high entropy rare earth tantalate ceramic material has ferroelastic phase transition, which helps to improve the fracture toughness of the material.(ⅲ) The low brittle-index (1.33 μm-1/2) of the material increases the sample loss tolerance, impeding the deformation and crack propagation of the material.(ⅳ) Doped CeO2 high-entropy rare earth tantalate material has excellent resistance to CMAS erosion.(ⅴ) Doped CeO2 rare earth tantalate ceramic material is a new thermal barrier coating material with great application potential.
Key words:  thermal barrier coating    tantalate ceramic    (Y0.5Gd0.5)TaO4    CeO2 doping    thermic property    mechanical property    CMAS erosion resistance
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TK265  
基金资助: 国家重点研发计划(2023YFB3711200)
通讯作者:  *赵世贤,博士,高级工程师,硕士研究生导师。主要从事先进耐火材料和结构陶瓷相关基础研究与产品开发。andyzhaosx@163.com   
作者简介:  李凌锋,硕士,任职于中钢集团洛阳耐火材料研究院有限公司,主要从事热障涂层、致密氮化硅陶瓷和先进耐火材料的研究。
引用本文:    
李凌锋, 司瑶晨, 王瑞达, 刘广华, 赵世贤, 李红霞, 李虹屿. 掺CeO2稀土钽酸盐陶瓷材料的性能研究[J]. 材料导报, 2026, 40(2): 24110106-5.
LI Lingfeng, SI Yaochen, WANG Ruida, LIU Guanghua, ZHAO Shixian, LI Hongxia, LI Hongyu. Study on Properties of CeO2-doped Rare Earth Tantalate Ceramics. Materials Reports, 2026, 40(2): 24110106-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110106  或          https://www.mater-rep.com/CN/Y2026/V40/I2/24110106
1 Zhao Y S, Zhang M, Dai J W, et al. Materials Reports, 2023, 37(6), 73 (in Chinese).
赵云松, 张迈, 戴建伟, 等. 材料导报, 2023, 37(6), 73.
2 Liu Y, Zhang W, Wang W, et al. Ceramics International, 2024, 50, 49095.
3 Zhang H, Zhang H, Sang W, et al. Ceramics International, 2024, 50, 31726.
4 Wang J, Chen L, Zhang L, et al. Journal of the American Ceramic Society, 2024, 107(6), 3895.
5 Wang X, He Y X, Wang C, et al. Journal of the American Ceramic Society, 2022, 105, 4588.
6 Dai M, Xu Y, Peng F, et al. Journal of Alloys and Compounds, 2024, 988, 174343.
7 Dong N, Jin Y, Jiang G, et al. Ceramics International, 2024, 50, 48931.
8 Zhou Y X, Gan M D, Yu W, et al. Journal of the American Ceramic Society, 2021, 104(12), 6467.
9 Wang Y, Zhang W, Du J, et al. Journal of the European Ceramic Society, 2025, 45(3), 117038.
10 Ren K, Wang Q K, Shao G, et al. Scripta Materialia, 2020, 178, 382.
11 Wang J, Wu F S, Zou R A, et al. Journal of the American Ceramic Society, 2021, 104(11), 5873.
12 Wang J, Jin Q, Wu P, et al. Acta Materialia, 2025, 283, 120523.
13 Yang T, Wang W, Huang J, et al. Journal of the American Ceramic Society, 2023, 106(9), 5541.
14 Wei Z Y, Meng G H, Chen L, et al. Journal of Advanced Ceramics, 2022, 11(7), 985.
15 Jiang C, Hao W, Liu C, et al. Journal of Alloys and Compounds, 2025, 1010, 177185.
16 Wang C, Wang L, Lang Z, et al. Journal of Materials Engineering and Performance, 2025, 34, 2107.
17 Luo X W, Luo L R, Zhao X F, et al. Journal of the European Ceramic Society, 2022, 42(5), 2391.
18 Yang T, Wang W, Tang Z, et al. Ceramics International, 2024, 50, 42506.
19 Wang J, Chong X Y, Lv L, et al. Journal of Materials Science & Technology, 2023, 157, 98.
20 Li W Q, Zhou H X, Su H R, et al. Materials Reports, 2023, 37(Z2), 139 (in Chinese).
李文权, 周红霞, 苏浩然, 等. 材料导报, 2023, 37(Z2), 139.
21 Wu D, Yao Y, Shan X A, et al. Journal of the American Ceramic Society, 2021, 104(2), 1132.
22 Xia J, Yang L, Wu R T, et al. Applied Surface Science, 2019, 481, 860.
23 Yang T, Wang W, Tang Z, et al. Ceramics International, 2024, 50(5), 7218.
[1] 孟嘉乐, 卢春成, 王恩会, 张雪良, 石英男, 贾建, 侯新梅. 陶瓷颗粒增强镍基粉末高温合金的研究进展[J]. 材料导报, 2026, 40(2): 25020153-8.
[2] 于晓涛, 袁涌, 王思启. 水老化作用下叠层聚氨酯支座的微相分离机理与力学性能退化研究[J]. 材料导报, 2026, 40(2): 25010201-8.
[3] 李亚莎, 吴雕, 王福达, 周朝威, 王桂斌, 董恒. 纳米ZrO2改性聚丙烯热力学性能的分子动力学模拟[J]. 材料导报, 2026, 40(2): 25010080-7.
[4] 黄海旺, 甘雪薇, 孙建平. 速生木材力学性能强化改性研究进展[J]. 材料导报, 2026, 40(2): 24120204-13.
[5] 谢树磊, 欧美琼, 侯坤磊, 王旻, 马颖澈. Mo、W对多晶铸造镍基高温合金组织及应用性能影响的研究进展[J]. 材料导报, 2026, 40(1): 24110085-11.
[6] 曹雷刚, 周权, 黄磊, 杨越, 蔡长宏, 刘园, 崔岩. 时效处理对高体分SiCp/7075Al复合材料力学性能的影响[J]. 材料导报, 2026, 40(1): 25030084-8.
[7] 贾婧, 庄伟彬, 李菁辉, 曹庆, 刘敬福. Ce对原位自生TiB2/6061复合材料显微组织及力学性能的影响[J]. 材料导报, 2026, 40(1): 24070164-7.
[8] 殷子洛, 朱泉峣, 李凯, 张成杰, 周彦鹏, 张雨晴. 聚丙烯纤维增强交联聚苯乙烯的介电及力学性能研究[J]. 材料导报, 2026, 40(1): 25010020-6.
[9] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[10] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[11] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[12] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[13] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[14] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[15] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed