Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 24110079-8    https://doi.org/10.11896/cldb.24110079
  无机非金属及其复合材料 |
无纺布复合膜及内容物对医用热敷贴发热性能的影响机制
陆珊珊1, 刘坤2, 李树康1, 方珍文1,*
1 广西壮族自治区医疗器械检测中心,南宁 530031
2 广西大学资源环境与材料学院,南宁 530004
Mechanism for the Effect of Non-woven Composite Membranes and Internal Components on Thermal Performance of Medical Hot Compress Patches
LU Shanshan1, LIU Kun2, LI Shukang1, FANG Zhenwen1,*
1 Guangxi Testing Center for Medical Devices, Nanning 530031, China
2 School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
下载:  全 文 ( PDF ) ( 45466KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 温度持续时间是行业标准中判定医用热敷贴发热性能好坏的重要指标,揭示热敷贴关键组成部分与其温度持续时间的内在关联规律对优化热敷贴制造和提升产品质量检测能力都至关重要。本研究首先采用响应面曲线法探究了内容物含Fe量、内容物质量和水蒸气透过率对热敷贴温度持续时间的多因素影响;进一步以温度持续时间指标为优、良、差的三批代表性热敷贴试样为研究对象,利用FTIR和DSC测试了热敷贴上无纺布复合膜的主要成分、耐热性及密度,并采用SEM和超景深显微镜观察了其微观结构形貌和孔隙特征。通过热红外成像仪、XRD和扫描电镜-背散射电子探测仪分析了内容物发热状态、内容物反应前后成分晶型变化和微观形态。结果表明,内容物中Fe含量相比水蒸气透过率和内容物质量对温度持续时间的影响更大,在Fe含量占内容物的65.6%、无纺布水蒸气透过率为391.4 g/(m2·24 h)和内容物质量为29.3 g的情况下,可以实现最长的温度持续时间。此外,无纺布复合膜均由高密度聚乙烯组成,是典型的双层结构,复合膜上更小的孔尺寸、紧密的复合程度和更大的膜厚度有利于提高热阻和气密性,延长温度持续时间。内容物过于急剧的发热反应会导致热敷贴发热不均匀,缩短持续时间。并且,在内容物主要成分相同时,Fe粉的不完全反应、显著不均一的颗粒物尺寸和严重的颗粒物团聚也是热敷贴发热持续时间缩短的主要原因。本工作可为有效改善热敷贴产品温度特性提供理论支持,同时相关测定方法的建立能够为强化热敷贴类产品质量检测提供新途径和技术参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陆珊珊
刘坤
李树康
方珍文
关键词:  热敷贴  温度持续时间  无纺布复合膜  发热性能  多因素影响    
Abstract: In industry standards, the temperature duration is a critical indicator for evaluating the heat-producing performance of medical hot compress patches. Therefore, revealing the intrinsic structure-property relationship between patch components and the temperature duration is essential for both manufacturing optimization and quality control enhancement. This study employed response surface methodology to investigate the multifactorial influences of the iron content in the internal components, the mass of the internal components, and the water vapor permeability on the temperature duration of hot compress patches. Furthermore, three batches of representative samples with distinct temperature duration (excellent/good/poor) were selected as the research subjects. Subsequently, the non-woven composite membrane was characterized using FTIR and DSC to determine composition, thermal resistance, and density. Besides, the microstructural morphology and pore characteristics were observed using SEM and super depth-of-field microscope. The thermal infrared imager, XRD, and SEM equipped with backscattered electron detector were employed to analyze the heat-producing state of the content package, the changes in the crystalline phases of the internal components during reaction as well as the microstructural characteristics, respectively. The results indicated that the Fe content exhibits more significant effects on the temperature duration compared with that of water vapor permeability and mass of the contents. Besides, the optimal temperature duration could be achieved when the Fe content accounts for 65.6%, the water vapor permeability is 391.4 g/(m2·24 h), and the mass of the contents is 29.3 g, respectively. Furthermore, the non-woven composite membrane was composed of high-density polyethylene (HDPE) and reflected typical bilayer structures. The smaller pore size, tighter coupling between layers and greater thickness of the composite membrane were conducive to enhanced thermal resistance and gas impermeability, thereby improving the temperature duration. Notably, the excessively rapid exothermic reaction of the internal components could lead to uneven heat-producing of the hot compress patches. Besides, when the compositions of the internal components are similar, the incomplete reaction of Fe powder, significantly uneven particle size, and severe agglomeration of the particles were the primary factors contributing to the reduced temperature duration. This work offers theoretical support for effectively improving the temperature duration of hot compress patches. Besides, the establishment of relevant measurement methods could provide new avenues and technical references for enhancing the quality assessment of hot compress patches.
Key words:  hot compress patch    temperature duration    non-woven composite membrane    heat-producing property    multifactorial influences
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TB34  
基金资助: 广西壮族自治区药品监督管理局药品安全科研项目(桂药监科直属〔2024〕002号);广西重点研发计划(AB24010117)
通讯作者:  *方珍文,硕士,广西壮族自治区医疗器械检测中心副主任药师。主要从事无源医疗器械质量控制、评价和相关标准化应用的研究。fzw1116@163.com   
作者简介:  陆珊珊,广西医疗器械检测中心检验员。目前主要从事无源领域医疗器械检测。
引用本文:    
陆珊珊, 刘坤, 李树康, 方珍文. 无纺布复合膜及内容物对医用热敷贴发热性能的影响机制[J]. 材料导报, 2026, 40(2): 24110079-8.
LU Shanshan, LIU Kun, LI Shukang, FANG Zhenwen. Mechanism for the Effect of Non-woven Composite Membranes and Internal Components on Thermal Performance of Medical Hot Compress Patches. Materials Reports, 2026, 40(2): 24110079-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110079  或          https://www.mater-rep.com/CN/Y2026/V40/I2/24110079
1 Liu P, Xu G F. China Medicine and Pharmacy, 2015, 5(17), 178(in Chinese).
刘平, 徐国防. 中国医药科学, 2015, 5(17), 178.
2 Yan J, Li L H, Pan L, et al. Chinese Nursing Research, 2019, 33(6), 1078(in Chinese).
颜建, 李丽花, 潘莉, 等. 护理研究, 2019, 33(6), 1078.
3 Ying L. Study on preparation and performance of chemical heating packs based on nonwovens. Master’s Thesis, Donghua University, China, 2021(in Chinese).
刘颖. 基于非织造材料的化学热敷包制备与性能研究. 硕士学位论文, 东华大学, 2021.
4 Qi L J, Qiao J Q, Zhang H M, et al. YY0060-2018 Hot compress sticker (bag), Standards Press of China, China, 2018(in Chinese).
齐丽晶, 乔嘉琪, 张海明, 等. YY0060-2018 热敷贴(袋), 中国标准出版社, 2018.
5 Xiao W K, Deng S C, Gan Y X, Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2021, 23(10), 3496(in Chinese).
萧文科, 郑世超, 甘彦雄, 等. 世界科学技术-中医药现代化, 2021, 23(10), 3496.
6 Lyu P J, Xu S H, Qiao H Y, et al. China Medical Device Information, 2016, 22(11), 34(in Chinese).
吕鹏举, 徐苏华, 乔海颖, 等. 中国医疗器械信息, 2016, 22(11), 34.
7 Mei X L, Liu G X, Deng Z G, et al. China Medical Device Information, 2022, 28(7), 26(in Chinese).
梅享林, 刘故乡, 邓志刚, 等. 中国医疗器械信息, 2022, 28(7), 26.
8 Khan F, Ansari A N, Nayab M. Journal of Bodywork and Movement Therapies, 2023, 35, 196.
9 Klarzak I, Ura-Bińczyk E, Płocińska M, et al. Thermal Science and Engineering Progress, 2018, 6, 87.
10 Qi L J, Qiao J Q, Zhang H M, et al. GB 1037-2021 Test method for water transmission of plastic film and sheet, Standards Press of China, China, 2018(in Chinese).
齐丽晶, 乔嘉琪, 张海明, 等. GB 1037-2021《塑料薄膜和片材透水蒸气性试验方法》, 中国标准出版社, 2018.
11 Lucas J. Journal of Statistical Planning and Inference, 2009, 139(2), 660.
12 Yu G C, Zheng H L, Wang X Q, et al. Journal of Liaocheng University (Natural Science Edition), 2022, 35(3), 62(in Chinese).
郁桂聪, 郑豪蕾, 王晓倩, 等. 聊城大学学报(自然科学版), 2022, 35(3), 62.
13 Noh S H, Lee B R, Yim Y K. Complementary Therapies in Medicine, 2014, 22(2), 311.
14 Ma X J, Zhao M Z, Guo C Y, et al. Journal of Liaocheng University (Natural Science Edition), 2021, 34(1), 62(in Chinese).
马晓晶, 赵明珠, 郭成英, 等. 聊城大学学报(自然科学版), 2021, 34(1), 62.
15 Liu H. Study on the clinical effect and metabolomics of graphene waring uterus acupoint plaster on primarydysmenorrhea. Ph. D. Thesis, Changchun University of Chinese Medicine, China, 2024 (in Chinese).
刘武. 石墨烯暖宫穴位贴治疗原发性痛经的临床效应及代谢组学研究. 博士学位论文, 长春中医药大学, 2024.
16 Mao Y H, Liu J T, Zhang L M. Plastics Packaging, 2023, 33(2), 30(in Chinese).
毛月红, 刘建涛, 张黎明. 塑料包装, 2023, 33(2), 30.
17 Kovács R L, Csontos M, Gyöngyösi S, et al. Polymer Testing, 2021, 96, 107080.
18 Villegas-Camacho O, Alejo-Eleuterio R, Francisco-Valencia I, et al. Data in Brief, 2024, 55, 110612.
19 Bashirgonbadi A, Ureel Y, Delva L, et al. Polymer Testing, 2024, 131, 108353.
20 Lin J H, Lin Y Y, Sue Y M, et al. Polymers, 2023, 15(10), p2306.
21 Lin X, Sun W, Lin M, et al. Royal Society of Chemistry Advances, 2024, 14(20), 14100.
22 Wang Y, Li S, Zhang Y, et al. Physical Therapy in Sport, 2021, 48, 177.
23 Kumar R S, Sateesh N, Subbiah R, et al. Materials Today: Proceedings, DOI:10.1016/j.matpr.2023.10.061.
24 Li X J. Geological Journal of China Universities, 2023, 29(6), 847.
[1] 春风, 特古斯, Tsogbadrakh N, Sangaa D. Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能[J]. 材料导报, 2019, 33(z1): 122-125.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed