| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| Research Progress of Electrolyte for Anode-free Lithium Metal Batteries |
| YU Hao1,2, DENG Wenjun2, WANG Yongfei1,*, LUO Dawei2,*
|
1 School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China 2 School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, Guangdong, China |
|
|
|
|
Abstract Anode-free lithium metal batteries (AFLMBs) are considered strong contenders for the next generation of high-energy battery systems due to their exceptional energy density, cost-effectiveness, and safety. By eliminating the need for cathode active materials, these batteries achieve higher energy density while reducing per-unit costs. However, the metallic lithium deposited at the cathode is highly reactive, prone to the formation of lithium dendrites, the generation of "dead lithium", and adverse reactions with the electrolyte. These issues hinder the formation of a stable cathode interface and accelerate the consumption of active lithium, ultimately leading to battery performance decline. Therefore, developing effective strategies to enhance the cycling stability and the reversibility of lithium metal deposition/stripping in AFLMBs has become a central goal in their development. Numerous efforts have been made to improve these batteries, including modifications to the electrolyte, current collector, artificial solid electrolyte interphase (SEI), and excess lithium in the cathode. As the core component of AFLMBs, the electrolyte requires systematic optimization strategies, such as high-concentration dual-salt systems, fluorinated solvent design, and solid-state electrolyte interface engineering, to enhance its cycle life and Coulombic efficiency. These advancements, achieved by modulating solvation structures, optimizing the chemical composition of the SEI, and suppressing lithium dendrite growth, establish a foundational framework for the practical application of high-energy-density AFLMBs.
|
|
Published: 25 January 2026
Online: 2026-01-27
|
|
|
|
|
1 Bruce P G, Freunberger S A, Hardwick L J, et al. Nature Materials, 2012, 11(1), 19. 2 Liu J, Bao Z N, Cui Y, et al. Nature Energy, 2019, 4(3), 180. 3 Qian J F, Adams B D, Zheng J M, et al. Advanced Functional Materials, 2016, 26(39), 7094. 4 Weber R, Genovese M, Louli A J, et al. Nature Energy, 2019, 4(8), 683. 5 Louli A J, Eldesoky A, Weber R, et al. Nature Energy, 2020, 5(9), 693. 6 Yu Z, Wang H S, Kong X, et al. Nature Energy, 2020, 5(7), 526. 7 Lee Y G, Fujiki S, Jung C, et al. Nature Energy, 2020, 5(4), 299. 8 Hagos T T, Thirumalraj B, Huang C J, et al. ACS Applied Materials & Interfaces, 2019, 11(10), 9955. 9 Assegie A A, Chung C C, Tsai M C, et al. Nanoscale, 2019, 11(6), 2710. 10 Rodriguez R, Edison R A, Stephens R M, et al. Journal of Materials Chemistry A, 2020, 8(7), 3999. 11 Alvarado J, Schroeder M A, Pollard T P, et al. Energy & Environmental Science, 2019, 12(2), 780. 12 Mukra T, Marrache R, Shekhter P, Peled E. Journal of the Electroche-mical Society, 2021, 168(9), 090541. 13 Su L S, Charalambous H, Cui Z H, Manthiram A. Energy & Environmental Science, 2022, 15(2), 843. 14 Pande V, Viswanathan V. ACS Energy Letters, 2019, 4(12), 2952. 15 Tong Z Z, Bazri B, Hu S F, et al. Journal of Materials Chemistry A, 2021, 9(12), 7396. 16 Zhang J G. Nature Energy, 2019, 4(8), 637. 17 He W X, Geng L, Yao F, Journal of Power Supply, 2024, 22(2), 183 (in Chinese). 何文轩, 耿磊, 姚芳. 电源学报, 2024, 22(2), 183. 18 Tian Y, An Y L, Wei C L, et al. Nano Energy, 2020, 78, 105344. 19 Kim S, Jung C, Kim H, et al. Advanced Energy Materials, 2020, 10(12), 1903993. 20 Hosaka T, Kubota K, Kojima H, et al. Chemical Communications, 2018, 54(60), 8387. 21 Nilsson V, Kotronia A, Lacey M, et al. ACS Applied Energy Materials, 2020, 3(1), 200. 22 Wang Z C, Zhang F R, Sun Y Y, et al. Advanced Energy Materials, 2021, 11(17), 2003752. 23 Niu C J, Lee H, Chen S R, et al. Nature Energy, 2019, 4(7), 551. 24 Beyene T T, Bezabh H K, Weret M A, et al. Journal of the Electrochemical Society, 2019, 166(8), A1501. 25 Choi H, Bae Y, Lee S M, et al. Journal of Electrochemical Science and Technology, 2022, 13(1), 78. 26 Matsumoto K, Inoue K, Nakahara K, et al. Journal of Power Sources, 2013, 231, 234. 27 Kang D W, Moon J, Choi H Y, et al. Journal of Power Sources, 2021, 490, 229504. 28 Wu B L, Chen C G, Danilov D L, et al. Energy & Environmental Materials, 2024, 7(3), e12642. 29 Hagos T M, Bezabh H K, Redda H G, et al. Journal of Power Sources, 2021, 512, 230388. 30 Fan X L, Ji X, Chen L, et al. Nature Energy, 2019, 4(10), 882. 31 Xue W J, Shi Z, Huang M J, et al. Energy & Environmental Science, 2020, 13(1), 212. 32 Holoubek J, Yu M Y, Yu S C, et al. ACS Energy Letters, 2020, 5(5), 1438. 33 Zheng Q F, Yamada Y, Shang R, et al. Nature Energy, 2020, 5(4), 291. 34 Li Y, Wu F, Li Y, et al. Chemical Society Reviews, 2022, 51(11), 4484. 35 Guo Z Z, Zhang R, Sun D, et al. Acta Chimica Sinica, 2024, 82(9), 919 (in Chinese). 郭姿珠, 张睿, 孙旦, 等. 化学学报, 2024, 82(9), 919. 36 Beyene T T, Jote B A, Wondimkun Z T, et al. ACS Applied Materials & Interfaces, 2019, 11(35), 31962. 37 Rodriguez R, Loeffler K E, Edison R A, et al. ACS Applied Energy Materials, 2018, 1(11), 5830. 38 Tan L J, Chen S Q, Chen Y W, et al. Angewandte Chemie, International Edition, 2022, 61(32), e202203693. 39 Zhang J W, Zhang H K, Deng L Q, et al. Energy Storage Materials, 2023, 54, 450. 40 Chen J, He B, Cheng Z X, et al. Journal of the Electrochemical Society, 2021, 168(12), 120535. 41 Feng Y, Wang G, Chen J Y, et al. Materials Reports, 2022, 36(11), 23 (in Chinese). 冯阳, 汪港, 陈君妍, 等. 材料导报, 2022, 36(11), 23. 42 Shi J, Ding L N, Wan Y H, et al. Journal of Energy Chemistry, 2021, 57, 650. 43 Wang H S, Yu Z, Kong X, et al. Advanced Materials, 2021, 33(25), 2008619. 44 Amanchukwu C V, Yu Z, Kong X, et al. Journal of the American Chemical Society, 2020, 142(16), 7393. 45 Yu Z, Rudnicki P E, Zhang Z W, et al. Nature Energy, 2022, 7(1), 94. 46 Gu Q, Liu X X, Zhou X Y, et al. Acta Chimica Sinica, 2024, 82(4), 449 (in Chinese). 谷琪, 刘夏夏, 周鑫宇, 等. 化学学报, 2024, 82(4), 449. 47 Chen X, Zhao N, Liu G X, et al. Chinese Journal of Power Sources, 2024, 48(6), 969 (in Chinese). 陈昕, 赵宁, 刘桂贤, 等. 电源技术, 2024, 48(6), 969. 48 Pei F, Huang Y M, Wu L, et al. Advanced Materials, 2024, 36(49), 2409269. |
| [1] |
XU Guipei, LIU Hao, LAI Jiewen, LU Yifeng, HUANG Hui, YI Zonglin, DI Huifang, WANG Zhenbing, SU Fangyuan, CHEN Chengmeng. Research Progress of Electrolytes for High-voltage Electrochemical Double-layer Capacitors[J]. Materials Reports, 2025, 39(9): 24030012-8. |
|
|
|
|