| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Research Progress on Thermal Conductivity Rare Earth Magnesium Alloys |
| LI Kun1,2, LI Ruihong1,*, REN Huiping1,*, HU Wenxin2, WANG Haiyan1, YANG Zhenghua2
|
1 School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China 2 Baotou Research Institute of Rare Earths, Baotou 014010, Inner Mongolia, China |
|
|
|
|
Abstract This paper provides a comprehensive review of the latest research progress in the field of thermally conductive rare earth magnesium alloys, with a particular focus on the development trends of alloy systems containing La and Ce rare earth elements. By analyzing the mechanism of action of rare earth elements on the thermal conductivity of magnesium alloys, the intrinsic correlation between thermal conductivity and mechanical properties enhancement is deeply analyzed, and the existing magnesium alloy thermal conductivity prediction models are systematically summarized. An innovative multi-scale design strategy for high thermal conductivity rare earth magnesium alloys is proposed: (1) By selecting rare earth elements with lower solubility (such as La, Ce) as the main alloying elements, while strictly controlling the content of other high solubility elements, the minimization of lattice distortion and the synergistic improvement of mechanical properties are achieved; (2) Combining the optimization of heat treatment processes to tailor the morphology, size, and distribution characteristics of the second phase, an efficient thermal conduction network is constructed. The findings show that La and Ce rare earth elements can significantly enhance the thermal conductivity of magnesium alloys by more than 20% through mechanisms such as purifying the matrix and regulating the distribution of precipitated phases. The composition-process synergistic optimization design framework proposed based on this provides theoretical guidance for the development of new high-performance rare earth magnesium alloy materials with thermal conductivity exceeding 120 W/(m·K) and tensile strength exceeding 250 MPa. This research has significant reference value for promoting the engineering application of magnesium alloys in thermal management fields such as electronic packaging and aerospace.
|
|
Published: 25 January 2026
Online: 2026-01-27
|
|
|
|
|
1 Zhang X. Research and analysis on heat-release technology of high-power LED array. Master’s Thesis, Zhejiang University of Technology, China, 2013(in Chinese). 张欣. 大功率LED阵列散热技术分析研究. 硕士学位论文, 浙江工业大学, 2013. 2 Xie D R. Electro-Mechanical Engineering, 1999(1), 26(in Chinese). 谢德仁. 电子机械工程, 1999(1), 26. 3 Pan H C. Research on the thermal conductivity of magnesium alloy. Master’s Thesis, Chongqing University, China, 2013 (in Chinese). 潘虎成. 镁合金导热性能的研究. 硕士学位论文, 重庆大学, 2013. 4 Yang X Y, Peng X, Song J, et al. Journal of Magnesium and Alloys, 2019, 7, 536. 5 Liu W, Zhou B, Wu G, et al. Journal of Magnesium and Alloys, 2019, 7, 597. 6 You G Q, Bai S J, Ming Y, et al. Journal of Functional Materials, 2016, 47(5), 05030(in Chinese). 游国强, 白世磊, 明玥, 等. 功能材料, 2016, 47(5), 05030. 7 Zhu W F, Luo Q, Zhang J Y, et al. Journal of Alloys and Compounds, 2018, 731, 784. 8 Jia X J. Research on microstructure and properties Mg-RE-(Al)alloy with high thermal conductivity. Master’s Thesis, Harbin Institute of Technology, China, 2017(in Chinese). 贾晓俊. 高导热高强Mg-RE-(Al)系镁合金的显微组织和性能研究. 硕士学位论文, 哈尔滨工业大学, 2017. 9 Liu Y F. Research on microstructure and properties of high strength and high thermal conductivity Mg-La-Zr/Mn Alloy. Master’s Thesis, Harbin Institute of Technology, China, 2019 (in Chinese). 刘雅菲. 高强度高导热Mg-La-Zr/Mn系合金的显微组织和性能研究. 硕士学位论文, 哈尔滨工业大学, 2019. 10 Liu Y F, Jia X J, Qiao X G, et al. Journal of Alloys and Compounds, 2019, 806, 71. 11 Xie T C. Effect of precipitates in Mg-Zn-La/Ce alloy on thermal conductivity. Master’s Thesis, Shanghai University, China, 2021 (in Chinese). 谢天赐. Mg-Zn-La/Ce合金中析出相对热导率的影响规律. 硕士学位论文, 上海大学, 2021. 12 Luo Q, Zhai C, Gu Q F, et al. Journal of Alloys and Compounds, 2020, 814, 152297. 13 Zhou X, Mo L L, Du J, et al. Journal of Materials Research and Technology, 2022, 17, 1380. 14 Zhou X, Mo L L, Du J, et al. Materials Characterization, 2022, 194, 112274. 15 Su C Y. Thermal mechanism of magnesium alloys based on solute atom and second phase. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2019 (in Chinese). 苏创业. 基于固溶原子和第二相的镁合金导热机制研究. 博士学位论文, 上海交通大学, 2019. 16 Zhong L P, Peng J, Sun S, et al. Journal of Materials Science & Technology, 2017, 33, 1240. 17 Peng J, Zhong L P, Wang Y J, et al. Journal of Alloys and Compounds, 2015, 639, 556. 18 Zhong L P, Peng J, Pan F S, et al. Journal of Alloys and Compounds, 2016, 661, 402. 19 Zhong L P. Research on thermal conductivity of Mg-RE alloys and the development of high thermalconductivity of magnesium alloys. Ph. D. Thesis, Chongqing University, China, 2016 (in Chinese). 钟丽萍. 稀土镁合金导热性能及高导热镁合金研究. 博士学位论文, 重庆大学, 2016. 20 Liu H F, Taiki N, Xu C, et al. Journal of Magnesium and Alloys, DOI: 10.1016/j.jma.2024.05.022. 21 Dai X T, Ma M L, Zhang K, et al. Journal of Materials Engineering 2020, 48(11), 92(in Chinese). 代晓腾, 马鸣龙, 张奎,等. 材料工程, 2020, 48(11), 92. 22 Chen L, Lü S, Li J, et al. Journal of Magnesium and Alloys, DOI: 10.1016/j.jma.2023.03.012. 23 Tang B. Study on the preparation process of Mg-Zn-Ca-Mn-Ce alloy with high strengthand high thermal conductivity. Master’s Thesis, Xi’an Shiyou University, China, 2023(in Chinese). 唐贝. 高强高导热Mg-Zn-Ca-Mn-Ce合金制备工艺研究. 硕士学位论文, 西安石油大学, 2023. 24 Li G Q, Zhang J H, Wu R Z, et al. Journal of Materials Science and Technology, 2018, 34, 1076. 25 Li G, Zhang J, Wu R, et al Journal of Materials Science and Technology, 2018, 34, 1076. 26 Zhong L P, Peng J, Sun S, et al. Journal of Materials Science & Technology, 2017, 33, 1240. 27 Dong N N, Wang J H, Ma H B, et al. Materials Today Communications, 2021, 29, 102894. 28 Feng L Y, et al. Journal of Materials Research and Technology, 2023, 22, 2955. 29 Li Z X, Hu B, Li D J, et al. Materials Science & Engineering A, 2022, 861, 144336. 30 Hu Y K. Study of directional solidification on mechanical properties and thermal conductivity of Mg-xZn-Y alloy. Master’s Thesis, Taiyuan University of Science and Technology, China, 2017 (in Chinese). 胡延昆. 定向凝固下Mg-xZn-Y合金力学性能及导热性能研究. 硕士学位论文, 太原科技大学, 2017. 31 Rudajevová A, Buch M, Mordike B L. Journal of Alloys and Compounds, 1999, 292 27. 32 Pan H, Pan F, Yang R, et al. Journall of Materials Science, 2014, 49. 3107. 33 Chen L, Lü S L, Guo W, et al. Journal of Alloys and Compounds, 2022, 918, 165614. 34 Tomasz, Rzychon, Andrzej, et al. Defect and Diffusion Forum, 2011, 312-315, 824 35 Kielbus A, Rzychon T, Moskal G. Defect and Diffusion Forum, 2011, 312-315, 489. 36 Rudajevová A, Lukac P. Materials Science and Engineering A, 2005, 397, 16. 37 Zheng Q J, Wu J, Chen T, et al. Journal of Materials Science & Techno-logy, 2024, 175, 223. 38 Cui Y. Research on thermal conductivity of magnesium alloy based on first principles. Master’s Thesis, Shanghai Jiao Tong University, China, 2021 (in Chinese). 崔洋. 基于第一性原理的镁合金导热性能研究. 硕士学位论文, 上海交通大学, 2021 39 Gong L, Wang Y, Cheng X, et al. International Journal of Heat and Mass Transfer, 2014, 68, 295. 40 Chen H, Xie T, Liu Q, Huang Y, et al. Journal of Alloys and Compounds, 2023, 930, 167392. 41 Su C, Li D, Luo A A, et al. Journal of Alloys and Compounds, 2018, 747, 431. 42 Yao F J, Li Z X, Hu Bo, et al. Journal of Materials Research and Technology, 2024, 28, 1824. 43 Ruan K, Shi X, Guo Y, et al. Composites Communications, 2020, 22, 100518. 44 Lei L, Su Y, Yang F, et al. Journal of Materials Science and Technology, 2020, 49, 7. 45 Li J, Wang X, Qiao Y, et al. Scripta Materialia, 2015, 109, 72. 46 Wu D, Wang C, Hu X, et al. Materials & Design, 2023, 225, 111482. 47 Wang L, Li J, Bai G, et al. Composites Part A: Applied Science and Manufacturing, 2018, 113, 76. 48 Wen S, Du Y, Tan J, et al. Journal of Materials Science and Technology, 2022, 97, 123. 49 Tan J, Wen S, Liu Y, et al. International Journal of Refractory Metals & Hard Materials, 2023, 112, 106153. 50 Guo Y, Li W Q, Liu X G, et al. Journal of Alloys and Compounds, 2022, 917, 165376. 51 Wang L, Li J, Che Z, et al. Journal of Alloys and Compounds, 2018, 749, 1098. 52 Wang L, Bai G, Li N, et al. Vacuum, 2022, 202, 111133. 53 Lorenzin G, Hoque M S B, Ariosa D, et al. Acta Materialia, 2022, 240, 118315. 54 Zhu W F, Luo Q, Zhang J Y, et al. Journal of Alloys and Compounds, 2018, 731, 784. 55 Liu C, Luo Q, Gu Q F, et al. Journal of Magnesium and Alloys, 2022, 10(11), 3250. 56 Chen H C, Xu W, Luo Q, et al. Journal of Materials Science and Technology, 2022, 112, 291. 57 Zhang Q, Chen H C, Luo Q, et al. Journal of Materials Science, 2022, 57, 12, 6819. 58 Zhang S, Li Q Q, Chen H C, et al. International Journal of Minerals Metallurgy and Materials, 2022, 29(8), 1543. 59 Luo Q, Zhai C, Gu Q F, et al. Journal of Alloys and Compounds, 2020, 814, 152297. 60 Luo Q, Zhai C, Sun D K, et al. Journal of Materials Science and Technology, 2019, 35, 2115. 61 Li H X, Xu W J, Zhang Y F, et al. International Journal of Minerals, Metallurgy and Materials, 2024, 31(1), 127. 62 Huang L, Liu S H, Du Y, et al. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2018, 62, 99. 63 Eivani A R, Ahmed, Zhou J, et al. Metallurgical and Materials Transactions A, 2009, 40(10), 2435. 64 Zhou, X, Mo L L, Du J, et al. Journal of Materials Research and Technology, 2022, 17, 1380. 65 Zhang Q X, Tong L B, Cheng L R, et al. Journal of Rare Earths, 2015, 33(1), 70. 66 Zhang S Q, Hu L F, Jiang L Y, et al. Shanghai Metal, 2018, 40(5), 71 (in Chinese). 张书强, 胡玲飞, 姜廉瑜, 等. 上海金属, 2018, 40(5), 71. 67 Miao X W, Peng K X, Zhang J Y, et al. Shanghai Metal, 2013, 35(6), 1 (in Chinese). 苗小伟, 彭科学, 张捷宇, 等. 上海金属, 2013, 35(6), 1. 68 Xie T, Wang Y F, Liu K, et al. Shanghai Metal, 2022, 44(4), 1(in Chinese). 谢婷, 王云峰, 刘轲, 等. 上海金属, 2022, 44(4), 1. 69 Zhang H. Microstructure, mechanical properties and thermal conductivity of Mg-Sm(-Mn) alloy. Master’s Thesis, Harbin Engineering University, China, 2023(in Chinese). 张浩. Mg-Sm(-Mn)合金微观结构、力学和导热性能研究. 硕士学位论文, 哈尔滨工程大学, 2023. 70 Yuan J W, Li T, Li X G, et al. Transactions of Materials and Heat Treatment, 2012, 33(4), 27 (in Chinese). 袁家伟, 李婷, 李兴刚, 等. 材料热处理学报, 2012, 33(4), 27. 71 Mendis C L, Oh-ishi K, Ohkubo T, et al. Materials Science and Engineering A, 2012, 553, 1. 72 Rudajevová A, Stanek M, Lukáe P. Materials Science and Engineering A, 2003, 341(1-2), 152. 73 Pan H C, Pan F S, Yang R M. Journal of Materials Science, 2014, 49(8), 3107. 74 Ying T, Zheng M Y, Li Z T, et al. Journal of Alloys and Compounds, 2014, 608, 19. 75 Ying T, Zheng M Y, Li Z T, et al. Journal of Alloys and Compounds, 2015, 621, 250. 76 Ren L B. The investigation influence of microalloying effect on the microstructure evolution and mechanical properties in AZ80. Ph. D. Thesis, Southwest Jiaotong University, China, 2019 (in Chinese). 任凌宝. 微合金化对AZ80组织演化与力学性能的影响研究. 博士学位论文, 西南交通大学, 2019. 77 Guo X, Lu X W, Zhang Y, et al. Transactions of Materials and Heat Treatment, 2023, 44(1), 77 (in Chinese). 郭旭, 卢贤文, 张钰, 等. 材料热处理学报, 2023, 44(1), 77. 78 Zhang S Q, Wu G X, Zhang B. Shanghai Metal, 2019, 41(5), 36(in Chinese). 张波, 张书强, 吴广新. 上海金属, 2019, 41(5), 36. |
|
|
|