Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 24070164-7    https://doi.org/10.11896/cldb.24070164
  金属与金属基复合材料 |
Ce对原位自生TiB2/6061复合材料显微组织及力学性能的影响
贾婧, 庄伟彬*, 李菁辉, 曹庆, 刘敬福
辽宁工程技术大学材料科学与工程学院,辽宁 阜新 123000
Effect of Ce on Microstructure and Tensile Properties of In-situ Synthesized TiB2/6061 Composites
JIA Jing, ZHUANG Weibin*, LI Jinghui, CAO Qing, LIU Jingfu
School of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, Liaoning, China
下载:  全 文 ( PDF ) ( 36408KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用Al-K2TiF6-KBF4体系,制备了原位自生3% TiB2/6061复合材料和0.3%Ce-3% TiB2/6061(质量分数,下同)复合材料。采用SEM和TEM对复合材料显微组织进行观察,通过室温拉伸对复合材料进行力学性能测试,研究了Ce对原位自生TiB2/6061复合材料显微组织及力学性能的影响。显微组织观察发现,TiB2颗粒与6061基体间界面干净,结合稳定。Ce通过在不同晶面的吸附,改变了TiB2颗粒的最终形貌,在颗粒表面出现倒角平台和圆弧角。Ce的加入缓解了颗粒团聚,团聚体的尺寸下降了38.68%,减小了复合材料基体晶粒尺寸,平均基体晶粒尺寸减小了56.50%。力学性能测试结果表明,3% TiB2/6061复合材料的力学性能因0.3%Ce的加入得到明显提高,屈服强度提升了66.71%,抗拉强度提升了35.22%,伸长率提升了17.59%。经分析,在复合材料内部主要存在细晶强化、Orowan强化和热失配强化三种强化机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾婧
庄伟彬
李菁辉
曹庆
刘敬福
关键词:  原位自生  TiB2/6061复合材料  Ce  显微组织  力学性能    
Abstract: In-situ synthesized 3% TiB2/6061 composites and 0.3% Ce-3% TiB2/6061 composites were fabricated by Al-K2TiF6-KBF4 system. The microstructure of the composites was observed with SEM and TEM, and the mechanical properties of the composites were tested by room temperature tensile testing. The effect of Ce on the microstructure and tensile properties of in-situ synthesized TiB2/6061 composites was studied. Microstructure observation reveals that the interface between TiB2 particles and 6061 matrix is clean and the interfacial bonding is stable. Ce effected the final morphology of TiB2 particles by adsorbing on different crystal planes, chamfering planes and arc corners appeared on the surface of TiB2 particles. The addition of Ce alleviated particle agglomeration, the size of particle agglomeration decreased by 38.68% and the grain size of the composites decreased, with an average grain size decreased by 56.50%. The tensile test shows that the tensile properties of the 3% TiB2/6061 composites are significantly improved by the addition of Ce, with YS increased by 66.71%, UTS increased by 35.22%, and EL increased by 17.59%. There are three main strengthening mechanisms in the composites: fine-grain strengthening, Orowan strengthening, and thermal expansion strengthening.
Key words:  In-situ synthesized    TiB2/6061 composites    Ce    microstructure    tensile property
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  TB331  
基金资助: 辽宁省自然基金联合基金计划项目(20240310);辽宁省高校基本科研项目(LJ212510147026)
通讯作者:  * 庄伟彬,辽宁工程技术大学材料科学与工程学院副教授、硕士研究生导师。主要研究金属基复合材料的制备与性能。近年来发表相关学术论文30余篇,获批国家发明专利7项。wbzhuanglntu@163.com   
作者简介:  贾婧,辽宁工程技术大学材料科学与工程学院硕士研究生,在刘敬福教授和庄伟彬副教授的指导下进行研究。目前主要研究领域为原位合成颗粒增强铝基复合材料的制备与性能研究。
引用本文:    
贾婧, 庄伟彬, 李菁辉, 曹庆, 刘敬福. Ce对原位自生TiB2/6061复合材料显微组织及力学性能的影响[J]. 材料导报, 2026, 40(1): 24070164-7.
JIA Jing, ZHUANG Weibin, LI Jinghui, CAO Qing, LIU Jingfu. Effect of Ce on Microstructure and Tensile Properties of In-situ Synthesized TiB2/6061 Composites. Materials Reports, 2026, 40(1): 24070164-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070164  或          https://www.mater-rep.com/CN/Y2026/V40/I1/24070164
1 Feng J, Han Y F, Han X C, et al. Journal of Materials Science & Technology, 2023, 156, 72.
2 Wang R F, Guo W G, Liu L T, et al. Journal of Materials Research and Technology 2023, 23, 191.
3 Nie J F, Fan Y, Zhao L, et al. Materials Reports, 2021, 35(9), 9009 (in Chinese).
聂金凤, 范勇, 赵磊, 等. 材料导报, 2021, 35(9), 9009.
4 Huang J C, Xiang Z L, Tang Y C, et al. Materials Chemistry and Physics, 2023, 301, 127561.
5 Zhang H, Liu F Y, Guo E Y, et al. Acta Materiae Compositae Sinica, 2023, 40(12), 6819 (in Chinese).
张虎, 刘福源, 郭恩宇, 等. 复合材料学报, 2023, 40(12), 6819.
6 Jin P, Liu Y, Li S, et al. Materials Reports, 2009, 23(11), 24 (in Chinese).
金鹏, 刘越, 李曙, 等. 材料导报, 2009, 23(11), 24.
7 Wu W G, Zeng T C, Hao W F, et al. Frontiers in Materials, 2022, 9, 817376.
8 Wang H W, Zhao D C, Wang M L. Acta Metallurgica Sinica, 2022, 58(4), 428 (in Chinese).
王浩伟, 赵德超, 汪明亮. 金属学报, 2022, 58(4), 428.
9 Ma S, Wang M, Wu Y, et al. Materials Science and Engineering: A, 2024, 891, 145969.
10 Zhuang W B, Yang H R, Yang W B, et al. Journal of Materials Engineering and Perform, 2021, 30(10), 7730.
11 Zhao M, Jiang L T, Wu G H. Materials Reports, 2008(6), 28 (in Chinese).
赵敏, 姜龙涛, 武高辉. 材料导报, 2008(6), 28.
12 Xue J, Wu W Y, Ma J B, et al. Science and Engineering of Composite Materials, 2021, 28(1), 73.
13 Agrawal S, Ghose A K, Chakrabariy I. Materials & Design, 2017, 113, 195.
14 Liu Z W, Dong Z W, Cheng X L, et al. Metallurgical and Materials Transactions A, 2018, 49(11), 5585.
15 Wu Y H, Liu B X, Kang H J, et al. Materials Science and Engineering A, 2022, 840, 142958.
16 Wang J, Chen G, Zhang J X, et al. Materials Research Express, 2019, 6(10), 106599.
17 Xue J, Han Y F, Wang J, et al. Materials Science and Technology, 2013, 29(11), 1373.
18 Zhao K, Kang H J, Wu Y H, et al. Materials Letters, 2020, 262, 127063.
19 Zhuang W, Jia J, Liu J, et al. Journal of Molecular Structure, 2024, 1301, 137423.
20 Yang S, Zhang R Y, Liu H, et al. Journal of Materials Research and Technology, 2020, 9(4), 7047.
21 Wang T M, Zheng Y P, Chen Z N, et al. Materials & Design, 2014, 64, 185.
22 Sun J, Zhang X B, Zhang Y J, et al. Micron, 2015, 70, 21.
23 Zhang C, Dang Q, Liu G H, et al. Materials Reports, 2023, 37(3), 106 (in Chinese).
张弛, 党乾, 刘国怀, 等. 材料导报, 2023, 37(3), 106.
24 Lu B, Li A M, Rao Y, et al. Materials Reports, 2022, 36(19), 139 (in Chinese).
卢博, 李安敏, 饶宇, 等. 材料导报, 2022, 36(19), 139.
25 Qu M, Liu X, Cui Y, et al. Journal of Materials Engineering, 2018, 46(3), 98 (in Chinese).
屈敏, 刘鑫, 崔岩, 等. 材料工程, 2018, 46(3), 98.
26 Zhao Y F. Research on structures and properties of in-situ A356-TiB2-La composites. Master's Thesis, Dalian University of Technology, China, 2016 (in Chinese).
赵玉飞. 原位自生A356-TiB2-La复合材料组织性能研究. 硕士学位论文, 大连理工大学, 2016.
27 Zhang T T, Feng K, Li Z G, et al. Applied Surface Science, 2020, 530, 147051.
28 Xue J, Wu W, Ma J, et al. Materials Science and Engineering: A, 2020, 786, 139416.
29 Niu G, Mao J, Wang J. Metallurgical and Materials Transactions A, 2019, 50, 5935.
30 中国钢铁工业协会. GB/T 2281-2021. 中国标准书号. 北京: 中国标准出版社, 2021.
31 Zheng Y Q, Shi E W, Li W J, et al. Journal of Inorganic Materials, 1999, (3), 321 (in Chinese).
郑燕青, 施尔畏, 李汶军, 等. 无机材料学报, 1999, (3), 321.
32 Xue Y, Li B, Wang X, et al. Materials Today Communications, 2021, 28, 102625.
33 Sun J, Wang X, Guo L, et al. Journal of Materials Research, 2019, 34(7), 1258.
34 O. H E. Proceedings of the Physical Society Section B, 1951, 64(9), 747.
35 Armstrong R W. Engineering Fracture Mechanics, 1987, 28(5), 529.
36 Ding W, Cheng Y, Chen T, et al. Research and Application of Materials Science, 2020, 2(1), 23.
37 Youssef Y M, Dashwood R J, Lee P D. Composites Part A, 2005, 36(6), 747.
[1] 谢树磊, 欧美琼, 侯坤磊, 王旻, 马颖澈. Mo、W对多晶铸造镍基高温合金组织及应用性能影响的研究进展[J]. 材料导报, 2026, 40(1): 24110085-11.
[2] 曹雷刚, 周权, 黄磊, 杨越, 蔡长宏, 刘园, 崔岩. 时效处理对高体分SiCp/7075Al复合材料力学性能的影响[J]. 材料导报, 2026, 40(1): 25030084-8.
[3] 殷子洛, 朱泉峣, 李凯, 张成杰, 周彦鹏, 张雨晴. 聚丙烯纤维增强交联聚苯乙烯的介电及力学性能研究[J]. 材料导报, 2026, 40(1): 25010020-6.
[4] 李树娜, 宁威臣, 李小军, 杨毅, 郑含, 张亚刚. CeO2-Fe2O3催化剂的低浓度CH4催化燃烧性能:Ce/Fe物质的量比的影响[J]. 材料导报, 2025, 39(9): 24030162-7.
[5] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[6] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[7] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[8] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[9] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[10] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[11] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[12] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[13] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[14] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[15] 脱锦鹏, 陈安琦, 姚富升, 徐俊杰, 李响, 董龙龙, 杨义. 颗粒增强耐热钛基复合材料设计制备研究进展[J]. 材料导报, 2025, 39(8): 24040119-10.
[1] . [J]. Materials Reports, 2018, 32(2): 333 -336 .
[2] ZHUO Qian, YANG Wenqing, CAO Changlin, CHEN Rongguo, QIAN Qingrong, CHEN Qinghua. Study on the Coordination Crosslinking of Acrylonitrile-butadiene Rubber/Ceric Sulfate Composites[J]. Materials Reports, 2018, 32(6): 965 -970 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] . Isothermal Crystallization Kinetics of High-temperature Resistant Polyamides
Prepared by Melt Polymerization
[J]. Materials Reports, 2017, 31(4): 137 -144 .
[5] MENG Jiayi, XIAN Zeyu, LI Xin, ZHANG Dequan. Preparation and Application of Photonic Crystal Fibers[J]. Materials Reports, 2017, 31(5): 106 -111 .
[6] GONG Manfeng, SUI Guangzhou, LIAN Haishan, LI Mingsheng, MO Deyun, CHEN Jian, WU Shanghua. Study on Microstructure and Properties for Co-rich Layers Cemented Carbides by Surface Nitriding Treatment[J]. Materials Reports, 2017, 31(8): 56 -61 .
[7] CHEN Liao, TANG Xingwei, ZHOU Han, FAN Tongxiang. Direct Ink Writing, Inkjet Printing and Direct Laser Writing Techniques and Their Applications in Microelectronics[J]. Materials Reports, 2017, 31(9): 158 -164 .
[8] DING Jun, LIU Bo, WANG Lusheng, HUANG Xia, SONG Kun. Microscale Molecular Dynamics Simulation of Different Factors Influence on
Melting Point of Single Crystal Copper
[J]. Materials Reports, 2017, 31(6): 147 -152 .
[9] XIE Zhibo, SONG Yanjun, LIANG Jinsheng, XUE Gang, MENG Junping, SUN Jianfeng. Research Status and Prospects of Low Temperature Selective Catalytic Reduction of NOx by MnOx-based Catalysts[J]. Materials Reports, 2017, 31(11): 38 -43 .
[10] LIU Zhifang, LIU Xinhong, HUANG Yalei, GU Qiang, WEN Yubin. Technological Progress in Modification of Aluminum Powder by Surface Coating[J]. Materials Reports, 2017, 31(11): 73 -79 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed