Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24030162-7    https://doi.org/10.11896/cldb.24030162
  无机非金属及其复合材料 |
CeO2-Fe2O3催化剂的低浓度CH4催化燃烧性能:Ce/Fe物质的量比的影响
李树娜1,*, 宁威臣1, 李小军1, 杨毅1, 郑含1, 张亚刚2
1 西安邮电大学理学院,西安 710121
2 西安科技大学化学与化工学院,西安 710054
Lean Methane Catalytic Combustion over CeO2-Fe2O3 Catalyst:Effect of Ce/Fe Molar Ratio
LI Shuna1,*, NING Weichen1, LI Xiaojun1, YANG Yi1, ZHENG Han1, ZHANG Yagang2
1 School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
2 College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
下载:  全 文 ( PDF ) ( 10851KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用水热合成法,通过改变Ce/Fe物质的量比制备了一系列CeO2-Fe2O3复合氧化物催化剂,并将其用于低浓度CH4催化燃烧,利用N2吸脱附、XRD、SEM、H2-TPR、O2-TPD及XPS等技术对催化剂进行表征,研究了Ce/Fe物质的量比对CeO2-Fe2O3复合氧化物催化剂结构、性能及低浓度CH4催化燃烧反应性能的影响。O2-TPD分析结果表明,随着铁摩尔分数的增加,CeO2-Fe2O3复合氧化物体相晶格氧的流动性变好;XPS分析结果表明,少量Fe3+的掺入有利于氧空位的形成,而大量Fe3+的引入则会导致氧空位湮灭。氧空位浓度最高的Ce3Fe1复合氧化物不具有最高的CH4转化率。因此,CeO2-Fe2O3复合氧化物催化剂的低浓度CH4催化燃烧活性除与氧空位的含量有关外,还与催化剂的晶格氧流动性及Fe2O3的含量等因素有关;晶格氧流动性更好、铁含量更高的Ce1Fe1复合氧化物呈现出最高的CH4转化率,500 ℃时可将CH4完全转化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李树娜
宁威臣
李小军
杨毅
郑含
张亚刚
关键词:  CeO2  Fe2O3  低浓度甲烷  催化燃烧    
Abstract: A series of CeO2-Fe2O3 composite oxide catalysts with different Ce/Fe molar ratios were synthesized by hydrothermal method, which were used for lean methane catalytic combustion. The CeO2-Fe2O3 composite oxide catalysts were characterized by N2 sorption-desorption, XRD, SEM, H2-TPR, O2-TPD and XPS. The effects of Ce/Fe molar ratio on the structure, performance, and lean methane catalytic combustion performance of CeO2-Fe2O3 composite oxide catalysts were studied. O2-TPD results indicate that the mobility of lattice oxygen in CeO2-Fe2O3 composite oxide catalysts improves with the increase of iron molar ratio. XPS results indicate that a small doping amount of Fe3+ facilitates the formation of oxygen vacancies whereas a large doping amount of Fe3+ annihilates oxygen vacancies. The Ce3Fe1 composite oxide with the highest oxygen vacancy concentration does not have the highest CH4 conversion. Therefore, the lean methane catalytic combustion activity of CeO2-Fe2O3 composite oxide catalysts is not only related to the content of oxygen vacancies, but also to the lattice oxygen mobility and Fe2O3 content of the catalyst. The Ce1Fe1 composite oxide with better lattice oxygen mobility and higher iron content exhibits the highest CH4 conversion, and CH4 can be completely converted at 500 ℃.
Key words:  ceria    ferric oxide    lean methane    catalytic combustion
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  O643  
基金资助: 国家自然科学基金(22178285);陕西省自然科学基金(2021JM-508;2021JM-387);2023年国家级大学生创新创业训练计划项目(202311664018)
通讯作者:  *李树娜,博士,西安邮电大学副教授、硕士研究生导师。主要从事微纳米材料的形貌调控及催化性能研究。lishuna165@126.com   
引用本文:    
李树娜, 宁威臣, 李小军, 杨毅, 郑含, 张亚刚. CeO2-Fe2O3催化剂的低浓度CH4催化燃烧性能:Ce/Fe物质的量比的影响[J]. 材料导报, 2025, 39(9): 24030162-7.
LI Shuna, NING Weichen, LI Xiaojun, YANG Yi, ZHENG Han, ZHANG Yagang. Lean Methane Catalytic Combustion over CeO2-Fe2O3 Catalyst:Effect of Ce/Fe Molar Ratio. Materials Reports, 2025, 39(9): 24030162-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030162  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24030162
1 Ercolino G, Stelmachowski P, Grzybek G, et al. Applied Catalysis B:Environmental, 2017, 206, 712.
2 Pu Z, Zhou H, Zheng Y, et al. Applied Surface Science, 2017, 410(15), 14.
3 Guo T, Du J, Wu J, et al. Chemical Engineering Journal, 2016, 306, 745.
4 Li S, Zhang Y, Shi J, et al. Nanomaterials, 2020, 10(1), 1.
5 Lim J, Jo D, Hong S, et al. Applied Catalysis B:Environmental, 2017, 219, 155.
6 Onn T, Zhang S, Arroyo-Ramirez L, et al. ACS Catalysis, 2015, 5(10), 5696.
7 Akbari E, Alavi S, Larimi A, et al. International Journal of Energy Research, 2022, 46(5), 6292.
8 Lv L, Zhang Z, Wang S, et al. Molecular Catalysis, 2023, 551, 113645.
9 Shang Z, Wang T, Ren A, et al. Applied Surface Science, 2023, 619, 156718.
10 Khatun R, Bhandari S, Poddar M, et al. International Journal of Hydrogen Energy, 2022, 47(92), 38895.
11 Trovarelli A. Comments on Inorganic Chemistry, 1999, 20 (4-6), 263.
12 Fornasiero P, Di Monte R, Ranga R G, et al. Journal of Catalysis, 1995, 152(1), 168.
13 Li S N, Song P, Zhang J L, et al. Journal of Fuel Chemistry and Technology, 2018, 46(5), 615 (in Chinese).
李树娜, 宋佩, 张金丽, 等. 燃料化学学报(中英文), 2018, 46(5), 615.
14 Li S N, Zhu G, Shi Q, et al. Journal of Fuel Chemistry and Technology, 2019, 47(9), 1111 (in Chinese).
李树娜, 朱刚, 石奇, 等. 燃料化学学报(中英文), 2019, 47(9), 1111.
15 Wang G, Li W, Jia K, et al. Applied Catalysis A:General, 2009, 364(1-2), 42.
16 Bao H, Chen X, Fang J, et al. Catalysis Letters, 2008, 125(1), 160.
17 Li K, Wang H, Wei Y, et al. Chemical Engineering Journal, 2010, 156, 512.
18 Mi R, Li D, Hu Z, et al. ACS Catalysis, 2021, 11(13), 7876.
19 Su Z, Yang W, Wang C, et al. Environmental Science & Technology, 2020, 54(19), 12684.
20 Tabakova T, Avgouropoulos G, Papavasiliou J, et al. Applied Catalysis B:Environmental, 2011, 101(3/4), 256.
21 Li S N, Shi Q, Li X J, et al. Journal of Fuel Chemistry and Technology, 2017, 45(6), 707 (in Chinese).
李树娜, 石奇, 李小军, 等. 燃料化学学报(中英文), 2017, 45(6), 707.
22 Zasada F, Janas J, Piskorz W, et al. ACS Catalysis, 2017, 7(4), 2853.
23 Chu, P Q, Wang S F, Zhao S G, et al. Journal of Fuel Chemistry and Technology, 2022, 50(2), 180 (in Chinese).
楚培齐, 王赛飞, 赵世广, 等. 燃料化学学报(中英文), 2022, 50(2), 180.
24 Li P, He C, Cheng J, et al. Applied Catalysis B:Environmental, 2011, 101(3-4), 570.
25 Chen X, Chen X, Yu E, et al. Chemical Engineering Journal, 2018, 344, 469.
26 Yan D, Mo S, Sun Y, et al. Chemosphere, 2020, 247(5), 1.
27 Wang H, Zhu H, Qin Z, et al. Journal of Catalysis, 2009, 264(2), 154.
28 Gong L, Liu C, Liu Q, et al. Catalysis Surveys from Asia, 2019, 23, 1.
29 Geng Y, Chen D, Li N, et al. Applied Catalysis B:Environmental, 2021, 280, 1.
30 Lin Q, Li S P, Miao Z P, et al. Materials Reports, 2024, 38(3), 22050040 (in Chinese).
林青, 黎水平, 缪志鹏, 等. 材料导报, 2024, 38(3), 22050040.
31 Światowska J, Lair V, Pereira-Nabais C, et al. Applied Surface Science, 2011, 257(21), 9110.
32 Lykaki M, Pachatouridou E, Carabineiro S, et al. Applied Catalysis B:Environmental, 2018, 230, 18.
33 Liao Y, He L, Man C, et al. Chemical Engineering Journal, 2014, 256(15), 439.
[1] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[2] 莫日格吉乐, 包莫日根, 白璐, 谢兵, 于晓丽, 曹鸿璋, 赵丹蕾, 赵斯琴. CeO2光催化原理及改性研究进展[J]. 材料导报, 2024, 38(21): 23080150-6.
[3] 杨贵荣, 宋文明, 许可, 马颖. CeO2对WC/Ni复合熔覆层微观组织与性能的影响[J]. 材料导报, 2024, 38(19): 23070014-7.
[4] 李聪, 余冉, 刘太楷, 邓春明, 邓畅光, 刘敏. 基于3D打印技术的甲烷水蒸气重整研究[J]. 材料导报, 2024, 38(10): 23020015-9.
[5] 龚玉玲, 武美萍, 缪小进, 崔宸. 扫描速度对激光熔覆CeO2/Ni60A涂层耐腐蚀性能的影响[J]. 材料导报, 2022, 36(18): 21050169-5.
[6] 王博磊, 钟和香, 张晶, 李夺, 王鹤臻, 周广波, 赵思阳, 王新雨, 潘立卫. 陶瓷基整体式催化剂催化燃烧挥发性有机物的研究进展[J]. 材料导报, 2022, 36(14): 20120169-9.
[7] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[8] 伊志豪, 孙杰, 李吉刚, 周添, 卫寿平, 解洪嘉, 杨育霖. 花球状CuO/CeO2材料上HCN的催化消除[J]. 材料导报, 2021, 35(8): 8017-8022.
[9] 浦娟, 薛松柏, 张雷, 吴铭方, 龙伟民, 王水庆, 钱似舰, 林铁松. CeO2对Ag30CuZnSn药芯银钎料润湿性能及钎焊接头组织与性能的影响[J]. 材料导报, 2021, 35(8): 8134-8139.
[10] 丁同悦, 陈奕桦, 胡俊俊, 杨本宏, 黄智锋. CeO2/Bi24O31Br10异质结构的制备及可见光催化性能[J]. 材料导报, 2021, 35(22): 22011-22015.
[11] 张先桂, 刘小磐, 高朋召, 廖明雅, 周仁宸. CeO2含量对SiO2-B2O3-ZnO-K2O-BaO系彩釉玻璃基料性能的影响[J]. 材料导报, 2020, 34(22): 22042-22046.
[12] 张勇, 张耿飞, 张宇涛, 宁璠, 晁奕, 冯鹏发. CeO2掺杂Si-B复合涂层的制备及氧化行为[J]. 材料导报, 2020, 34(18): 18035-18038.
[13] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[14] 刘光蓉, 李露, 张祖超, 冯支斌. 人造金红石母液制备α-Fe2O3纳米颗粒的研究[J]. 材料导报, 2019, 33(Z2): 150-153.
[15] 邢小光, 许金余, 白二雷, 朱靖塞, 王谕贤. 纳米Fe2O3水泥基复合材料制备的响应曲面研究[J]. CLDB, 2018, 32(8): 1367-1372.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed