Lean Methane Catalytic Combustion over CeO2-Fe2O3 Catalyst:Effect of Ce/Fe Molar Ratio
LI Shuna1,*, NING Weichen1, LI Xiaojun1, YANG Yi1, ZHENG Han1, ZHANG Yagang2
1 School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China 2 College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
Abstract: A series of CeO2-Fe2O3 composite oxide catalysts with different Ce/Fe molar ratios were synthesized by hydrothermal method, which were used for lean methane catalytic combustion. The CeO2-Fe2O3 composite oxide catalysts were characterized by N2 sorption-desorption, XRD, SEM, H2-TPR, O2-TPD and XPS. The effects of Ce/Fe molar ratio on the structure, performance, and lean methane catalytic combustion performance of CeO2-Fe2O3 composite oxide catalysts were studied. O2-TPD results indicate that the mobility of lattice oxygen in CeO2-Fe2O3 composite oxide catalysts improves with the increase of iron molar ratio. XPS results indicate that a small doping amount of Fe3+ facilitates the formation of oxygen vacancies whereas a large doping amount of Fe3+ annihilates oxygen vacancies. The Ce3Fe1 composite oxide with the highest oxygen vacancy concentration does not have the highest CH4 conversion. Therefore, the lean methane catalytic combustion activity of CeO2-Fe2O3 composite oxide catalysts is not only related to the content of oxygen vacancies, but also to the lattice oxygen mobility and Fe2O3 content of the catalyst. The Ce1Fe1 composite oxide with better lattice oxygen mobility and higher iron content exhibits the highest CH4 conversion, and CH4 can be completely converted at 500 ℃.
1 Ercolino G, Stelmachowski P, Grzybek G, et al. Applied Catalysis B:Environmental, 2017, 206, 712. 2 Pu Z, Zhou H, Zheng Y, et al. Applied Surface Science, 2017, 410(15), 14. 3 Guo T, Du J, Wu J, et al. Chemical Engineering Journal, 2016, 306, 745. 4 Li S, Zhang Y, Shi J, et al. Nanomaterials, 2020, 10(1), 1. 5 Lim J, Jo D, Hong S, et al. Applied Catalysis B:Environmental, 2017, 219, 155. 6 Onn T, Zhang S, Arroyo-Ramirez L, et al. ACS Catalysis, 2015, 5(10), 5696. 7 Akbari E, Alavi S, Larimi A, et al. International Journal of Energy Research, 2022, 46(5), 6292. 8 Lv L, Zhang Z, Wang S, et al. Molecular Catalysis, 2023, 551, 113645. 9 Shang Z, Wang T, Ren A, et al. Applied Surface Science, 2023, 619, 156718. 10 Khatun R, Bhandari S, Poddar M, et al. International Journal of Hydrogen Energy, 2022, 47(92), 38895. 11 Trovarelli A. Comments on Inorganic Chemistry, 1999, 20 (4-6), 263. 12 Fornasiero P, Di Monte R, Ranga R G, et al. Journal of Catalysis, 1995, 152(1), 168. 13 Li S N, Song P, Zhang J L, et al. Journal of Fuel Chemistry and Technology, 2018, 46(5), 615 (in Chinese). 李树娜, 宋佩, 张金丽, 等. 燃料化学学报(中英文), 2018, 46(5), 615. 14 Li S N, Zhu G, Shi Q, et al. Journal of Fuel Chemistry and Technology, 2019, 47(9), 1111 (in Chinese). 李树娜, 朱刚, 石奇, 等. 燃料化学学报(中英文), 2019, 47(9), 1111. 15 Wang G, Li W, Jia K, et al. Applied Catalysis A:General, 2009, 364(1-2), 42. 16 Bao H, Chen X, Fang J, et al. Catalysis Letters, 2008, 125(1), 160. 17 Li K, Wang H, Wei Y, et al. Chemical Engineering Journal, 2010, 156, 512. 18 Mi R, Li D, Hu Z, et al. ACS Catalysis, 2021, 11(13), 7876. 19 Su Z, Yang W, Wang C, et al. Environmental Science & Technology, 2020, 54(19), 12684. 20 Tabakova T, Avgouropoulos G, Papavasiliou J, et al. Applied Catalysis B:Environmental, 2011, 101(3/4), 256. 21 Li S N, Shi Q, Li X J, et al. Journal of Fuel Chemistry and Technology, 2017, 45(6), 707 (in Chinese). 李树娜, 石奇, 李小军, 等. 燃料化学学报(中英文), 2017, 45(6), 707. 22 Zasada F, Janas J, Piskorz W, et al. ACS Catalysis, 2017, 7(4), 2853. 23 Chu, P Q, Wang S F, Zhao S G, et al. Journal of Fuel Chemistry and Technology, 2022, 50(2), 180 (in Chinese). 楚培齐, 王赛飞, 赵世广, 等. 燃料化学学报(中英文), 2022, 50(2), 180. 24 Li P, He C, Cheng J, et al. Applied Catalysis B:Environmental, 2011, 101(3-4), 570. 25 Chen X, Chen X, Yu E, et al. Chemical Engineering Journal, 2018, 344, 469. 26 Yan D, Mo S, Sun Y, et al. Chemosphere, 2020, 247(5), 1. 27 Wang H, Zhu H, Qin Z, et al. Journal of Catalysis, 2009, 264(2), 154. 28 Gong L, Liu C, Liu Q, et al. Catalysis Surveys from Asia, 2019, 23, 1. 29 Geng Y, Chen D, Li N, et al. Applied Catalysis B:Environmental, 2021, 280, 1. 30 Lin Q, Li S P, Miao Z P, et al. Materials Reports, 2024, 38(3), 22050040 (in Chinese). 林青, 黎水平, 缪志鹏, 等. 材料导报, 2024, 38(3), 22050040. 31 Światowska J, Lair V, Pereira-Nabais C, et al. Applied Surface Science, 2011, 257(21), 9110. 32 Lykaki M, Pachatouridou E, Carabineiro S, et al. Applied Catalysis B:Environmental, 2018, 230, 18. 33 Liao Y, He L, Man C, et al. Chemical Engineering Journal, 2014, 256(15), 439.