REVIEW PAPER |
|
|
|
|
|
Research Status and Prospects of Low Temperature Selective Catalytic Reduction of NOx by MnOx-based Catalysts |
XIE Zhibo1,2, SONG Yanjun1,2, LIANG Jinsheng1,2, XUE Gang1,2, MENG Junping1,2, SUN Jianfeng1,2
|
1 Key Laboratory of Special Functional Materials for Ecological Environment and Information of Ministry of Education, Hebei University of Technology, Tianjin 300130; 2 Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130 |
|
|
Abstract Manganese(Mn) based catalysts have relatively high catalytic activity and low cost, which has been widely used in selective catalytic reduction (SCR) technology for the removal of NOx from flue gas. The recent progress on the Mn-based catalysts for low-temperature SCR de-NOx is systematically reviewed. On this basis, Mn-based catalysts are divided into two categories: single MnOx catalysts and Mn-based multi-metal oxide catalysts. According to single MnOx catalysts, the effects of Mn oxidation state, crystallization state, specific surface area and morphology on catalytic activity are systematically analyzed. For multi-metal oxide catalysts, the various facts dominated by the components of catalysts are summarized from four aspects, improving de-NOx efficiency, extending operation temperature range, enhancing N2 selectivity, and improving resistance to SO2 and H2O. Finally, the application prospect of manganese based catalysts are predicted according to the above summary.
|
Published: 10 June 2017
Online: 2018-05-04
|
|
|
|
1 Taylor K C. Nitric oxide catalysis in automotive exhaust systems catalysis reviews[J]. Sci Eng, 1994,25(10):457. 2 杨颺. 烟气脱硫脱硝净化工程技术与设备[M]. 北京:化学工业出版社,2013. 3 Xue G, Zhao Y, Liang J S, et al. Properties of La0.9Sr0.1MnO3 and tourmaline compound catalytic materials for methane combustion [J]. Rare Earth,2014,32(9):837. 4 Li L H, Liu J, Cao Y P. Discussions on denitration technology for exhaust gas of coke oven battery[J]. Fuel Chem Processes,2015(3):42(in Chinese). 李良华,刘杰,曹银平. 焦炉烟气脱硝工艺技术探讨[J]. 燃料与化工,2015(3):42. 5 Liu Z M, Woo S I. Recent advances in catalytic DeNOx science and technology[J]. Catal Rev: Sci Eng,2006,48(1):43. 6 Busca G, Lietti L, Ramis G, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOx, by ammonia over oxide catalysts: A review[J]. Appl Cataly B Environ,1998, 18(18):1. 7 Zheng Y Y, Wang X. Research progress on Mn-based catalysts for low-temperature selective catalytic reduction of NOx[J]. J Funct Mater,2014,45(11):11008(in Chinese). 郑玉婴,汪谢. Mn基低温SCR脱硝催化剂的研究进展[J]. 功能材料,2014,45(11):11008. 8 Busch M, Schmidt W, et al. Effect of preparation of iron-infiltrated activated . carbon catalysts on nitrogen oxide conversion at low temperature[J]. Appl Catal B: Environ,2014,160-161(1):641. 9 Xiao C W, Li T. Research progress of low-temperature SCR denitrification manganese-based catalysts[J]. Clean Coal Technol,2016,22(1):95(in Chinese). 肖翠微,李婷. 低温SCR锰系脱硝催化剂的研究进展[J]. 洁净煤技术,2016,22(1):95. 10 Vuong T H, Radnik J, Kondratenko E, et al. Structure-reactivity relationships in VOx /CexZr1-xO2 catalysts used for low-temperature NH3 -SCR of NO [J]. Appl Catal B: Environ,2016,128:1. 11 Chen P, Rauch D, Weide P, et al. The effect of Cu and Fe cations on NH3-supported proton transport in DeNOx-SCR zeolite catalysts[J]. Catal Sci Technol,2016,6(10):3362. 12 Liu X S, et al. Evolution of copper species on Cu/SAPO-34 SCR ca-talysts upon hydrothermal aging[J]. Catal Today,2016,281:596. 13 Chun G C. Study on reaction activity of SCR denitrification catalyst[J]. Northeast Electric Power Technol,2016,37(1):59(in Chinese). 春国成. SCR脱硝催化剂反应活性探讨[J]. 东北电力技术,2016,37(1):59. 14 Wang Z, Zhou J, Zhu Y, et al. Simultaneous removal of NOx , SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: Experimental results[J]. Fuel Processing Technol,2007, 88(8):817. 15 Liu T, Wang Y C, Wu R Q, et al. Research advance review for low-temperature NH3-SCR catalysts[J]. J Safety Environ,2012,6(12):36(in Chinese). 刘婷,王延春,吴瑞青,等. 低温NH3-SCR脱硝催化剂研究进展[J]. 安全与环境学报, 2012,6(12):36. 16 Marbán G, Valdéssolás T, Fuertes A B. Mechanism of low tempe-rature selective catalytic reduction of NO with NH3 over carbon-supported Mn3O4[J]. Phys Chem Chem Phys, 2003,6(2):138. 17 Jin R B, Liu Y, Wu Z B, et al. Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3: Acomparative study[J]. Chemosphere,2010,78(9):1160. 18 Zhang Z S, Crocker M, Chen B B, et al. Pt-free, non-thermal plasma-assisted NOx, storage and reduction over M/Ba/Al2O3, (M = Mn, Fe, Co, Ni, Cu) catalysts[J]. Catal Today,2015, 256:115. 19 Park T S, Jeong S K, Hong S H, et al. Selective catalytic reduction of nitrogen oxides with NH3 over natural manganese ore at low tem-perature[J]. Ind Eng Chem Res,2001,40(21):4491. 20 Yu C L, Wang L S, Huang B C. In situ DRIFTS study of the low temperature selective catalytic reduction of NO with NH3 over MnOx supported on multi-walled carbon nanotubes catalysts[J]. Aerosol Air Quality Res,2015,2015(3):1017. 21 Kang M, et al. Novel MnOx catalysts for NO reduction at low temperature with ammonia[J]. Catal Lett,2006,106(1):77. 22 Kapteijn F, Singoredjo L, Andreini A, et al. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Cheminform,1994, 3(2-3):173. 23 Tang X L, Hao J M, Xu W G, et al. Low temperature selective ca-talytic reduction of NOx with NH3 over amorphous MnOxcatalysts prepared by three methods[J]. Catal Commun,2007, 8(3):329. 24 Tian W, Yang H S, Fan X Y, et al. Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature [J]. J Hazar-dous Mater,2011,188(1-3):105. 25 Chen Z H, Wang F R, et al. Low-temperature selective catalytic reduction of NOx with NH3 over Fe-Mn mixed-oxide catalysts containing Fe3Mn3O8 phase[J]. Ind Eng Chem Res, 2011,51(1):202. 26 Liu Z, Yang Y, Zhang S, et al. Selective catalytic reduction of NOx, with NH3, over Mn-Ce mixed oxide catalyst at low temperatures[J]. Catal Today,2013,216:76. 27 Miguel A, Zamudio, Nunzio R, et al. Low temperature NH3 selective catalytic reduction of NOx over substituted MnCr2O4 spinel-oxide catalysts[J]. Ind Eng Chem Res,2011,50(11):417. 28 Qi G, Yang R T, Chang R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures [J]. Appl Catal B: Environ, 2004,51:93. 29 Maria C, Oliver K, Max M, et al. Characterization of Nb-containing MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3 [J]. Phys Chem C,2010, 114(21):9791. 30 Sun P, Guo R T, Liu S M, et al. The enhanced performance of MnOx catalyst for NH3-SCR reaction by the modification with Eu[J]. Appl Catal A General,2017,531:129. 31 Zhu Y, et al. Novel holmium-modified Fe-Mn/TiO2 catalysts with a broad temperature window and high sulfur dioxide tolerance for low-temperature SCR[J]. Catal Commun,2017,88:64. 32 Hu H, Zha K, Li H, et al. In situ, DRIFTs investigation of the reaction mechanism over MnOx-MOy/Ce0.75Zr0.25O2, (M = Fe, Co, Ni, Cu) for the selective catalytic reduction of NOx, with NH3[J]. Appl Surf Sci,2016,387:921. 33 Chen T, Guan B, Lin H, et al. In situ DRIFTS study of the mechanism of low temperature selective catalytic reduction over manganese-iron oxides[J]. Chin J Catal,2014,35(3):294. 34 Hu W S, Gao X, et al. Deactivation mechanism of arsenic and resis-tance effect of SO42- on commercial catalysts for selective catalytic reduction of NOx with NH3 [J]. Chem Eng J,2016,293:118. 35 Yan D J, Yu Y, et al. Poisoning effect of SO2 on Mn-Ce/TiO2 catalysts for NO reduction by NH3 catalysts for NO reduction by NH 3 at low temperature [J]. J Fuel Chem Technol,2016,44(2):232. 36 Kong Z, et al. Enhanced activity of MnxW0.05-Ti0.95-xO2-δ, for selective catalytic reduction of NOx, with ammonia by self-propagating high-temperature synthesis[J]. Catal Commun,2015,64:27. 37 Grossale A, Nova I, Tronconi E, et al. The chemistry of the NO/NO2-NH3, “fast” SCR reaction over Fe-ZSM5 investigated by transient reaction analysis[J]. J Catal,2008,256(2):312. 38 Wu S, Yao X, Zhang L, et al. Improved low temperature NH3-SCR performance of FeMnTiOx mixed oxide with CTAB-assisted synthesis[J]. Chem Commun,2015,51(16):3470. 39 Jiang B, Yue L, Wu Z. Low-temperature selective catalytic reduction of NO on MnOx/TiO2, prepared by different methods[J]. J Hazardous Mater,2009,162(2-3):1249. 40 Qi G, Yang R T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania[J]. Appl Catal B,2000,44:217. 41 Liu S J, Yan D J, Huang X M, et al. Influences of doping modification on performance of low-temperature SCR catalyst Mn-Ce/TiO2[J]. Chin J Environ Eng,2016(8):4403 (in Chinese). 刘树军,闫东杰,黄学敏,等. 掺杂改性对Mn-Ce/TiO2低温SCR催化剂性能的影响[J]. 环境工程学报,2016(8):4403. 42 Ji F H. Improvement of the activity of Fe-Ti spinel for the selective catalytic reduction of NO with NH3 at low temperatures[D].Nanjing: Nanjing University of Science & Technology,2016(in Chinese). 戚飞鸿. Fe-Ti尖晶石低温SCR性能的改进[D]. 南京:南京理工大学,2016. 43 Meng J, Liang J, Liu J, et al. Effect of heat treatment on the far-infrared emission spectra and fine structures of black tourmaline[J]. J Nanosci Nanotechnol,2014,14(5):3607. 44 Zhu D, Liang J, Ding Y, et al. Effect of heat treatment on far infrared emission properties of tourmaline powders modified with a rare earth[J]. J Am Ceram Soc,2008,91(8):2588. 45 Chen H, et al. Characterization and properties of sepiolite/polyurethane nanocomposites[J]. Mater Sci Eng A,2007,445(6):725. 46 Zuo H Q, Xu D Y, et al. Research progress in palygorskite-supported catalysts for selective catalytic reduction of NOx at low temperature[J]. Chem Ind Eng Prog,2016, 35(10):3164 (in Chinese). 左海清,徐东耀, 等. 凹凸棒石低温SCR脱硝催化剂的研究进展[J]. 化工进展, 2016,35(10):3164. |
|
|
|