Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 25030084-8    https://doi.org/10.11896/cldb.25030084
  金属与金属基复合材料 |
时效处理对高体分SiCp/7075Al复合材料力学性能的影响
曹雷刚, 周权, 黄磊, 杨越, 蔡长宏, 刘园, 崔岩*
北方工业大学机械与材料工程学院,北京 100144
Effect of Aging on Mechanical Properties of High-volume-fraction SiCp/7075Al Composite
CAO Leigang, ZHOU Quan, HUANG Lei, YANG Yue, CAI Changhong, LIU Yuan, CUI Yan*
School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
下载:  全 文 ( PDF ) ( 54655KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用平均粒径12 μm的7075铝合金为基体合金、平均粒径11 μm的SiC颗粒为增强相,通过热等静压法制备SiC颗粒体积分数为55%的SiCp/7075Al复合材料,研究105、125和145 ℃时效处理对复合材料力学性能的影响。结果表明:原始态复合材料的硬度、弯曲强度和弹性模量分别为242HBW、735.8 MPa和205.3 GPa。105 ℃时效态复合材料的硬度随时效时间延长逐渐增加,最高为318HBW,相较于原始态复合材料提升了31.4%。复合材料时效强化效果随时效温度的升高而下降。105 ℃和125 ℃时效态复合材料应力-应变曲线变化规律基本一致,弯曲强度均较高且非常接近。其中105 ℃时效21 h复合材料的弯曲强度最高,为928 MPa,相较于原始态复合材料提升了26.1%。类似地,105、125 ℃时效态复合材料条件屈服强度(σ0.01σ0.05σ0.1)均随时效时间延长而升高。其中,105 ℃/60 h时效态复合材料抵抗微小变形的能力更好,σ0.01σ0.05σ0.1分别为453.9、686.6、808.6 MPa,比原始态复合材料分别提升了105.6%、85.8%和67.0%。整体上,时效态复合材料的弹性模量略有下降,但都保持在较高水平,为192.8 GPa。透射电镜分析结果表明,105 ℃时效初期复合材料硬度显著提升是因为基体合金逐步析出大量的GP区,随后GP区逐渐消失、η′相逐渐析出。时效30 h复合材料基体合金GP区和η′相共存,60 h完全转变为η′相,且已开始析出η相,但是由于时效中后期析出相数量减少、尺寸增加,复合材料硬度提升缓慢。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹雷刚
周权
黄磊
杨越
蔡长宏
刘园
崔岩
关键词:  碳化硅  复合材料  热等静压  时效  力学性能    
Abstract: The 7075 aluminum alloy with an average particle size of 12 μm was selected as the matrix alloy, and the SiC particles with an average particle size of 11 μm was selected as the reinforcement. SiCp/7075Al composite with SiC particle volume fraction of 55% was prepared using the hot isostatic pressing method to investigate the effect of aging treatments at 105 ℃, 125 ℃ and 145 ℃ on the mechanical properties of the composite. The results show that the hardness, bending strength and elastic modulus of the as-fabricated composite are 242.3HBW, 735.8 MPa and 205.3 GPa, respectively. The hardness of the composite aged at 105 ℃ gradually increases as the aging time increases, with the maximum hardness of 318HBW, representing an increment of 31.4% compared to that of the as-fabricated composite. The age-hardening effect of the composite decreases as the aging temperature increases. The stress-strain curves of the composites aged at 105 ℃ and 125 ℃ exhibit a similar trend, showing relatively high and very close bending strengths. The composite aged at 105 ℃ for 21 h has the highest flexural strength of 928 MPa, representing an increment of 26.1% compared to that of the as-fabricated composite. Similarly, the conditional yield strengths (σ0.01, σ0.05 and σ0.1) of the composites aged at 105 ℃ and 125 ℃ increase as the aging time increases. The composite aged at 105 ℃ for 60 h shows better resistance to micro-deformation, with the corresponding σ0.01, σ0.05and σ0.1values being 453.9, 686.6 and 808.6 MPa, respectively, which represent increments of 105.6%,85.8% and 67.0% compared to those of the as-fabricated composite, respectively. The elastic modulus of the aged composites decreases slightly, but it remains at a relatively high level of 192.8 GPa. TEM results indicate that the significant increase in hardness of the 105 ℃-aged composite during the early stage can be attributed to the gradual precipitation of a large number of GP zones in the matrix alloy. Subsequently, the GP zones gradually disappear while the η′ phases precipitate, resulting in the co-existence of the GP zones and the η′ phase in the matrix alloy of the composite aged for 30 h. After aging for 60 h, the precipitates in the matrix alloy are almost entirely η′ phases, with very few η phases. The hardness of the composite increases slowly due to the decreasing number and increasing size of the precipitates during the middle and late stages of the aging process.
Key words:  silicon carbide    composite    hot isostatic pressing    aging    mechanical property
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  TB333  
基金资助: 国家重点研发计划课题(2022YFB3707402)
通讯作者:  * 崔岩,博士,北方工业大学机械与材料工程学院研究员、博士研究生导师。长期从事金属基复合材料研究工作,研制的的结构/功能一体化高体分铝基复合材料在百余个航天器上得到空间在轨应用。cuiyan@ncut.edu.cn   
作者简介:  曹雷刚,博士,北方工业大学机械与材料工程学院副教授、博士研究生导师。主要从事金属基复合材料和高熵合金相关研究。
引用本文:    
曹雷刚, 周权, 黄磊, 杨越, 蔡长宏, 刘园, 崔岩. 时效处理对高体分SiCp/7075Al复合材料力学性能的影响[J]. 材料导报, 2026, 40(1): 25030084-8.
CAO Leigang, ZHOU Quan, HUANG Lei, YANG Yue, CAI Changhong, LIU Yuan, CUI Yan. Effect of Aging on Mechanical Properties of High-volume-fraction SiCp/7075Al Composite. Materials Reports, 2026, 40(1): 25030084-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25030084  或          https://www.mater-rep.com/CN/Y2026/V40/I1/25030084
1 Shi W, Wang Y. Hot Working Technology, 2024, 53(24), 17(in Chinese).
师维, 汪勇. 热加工工艺, 2024, 53(24), 17.
2 Liang Q W, Liu C X, Cao L X. et al. Material Sciences, 2022, 12(5), 453 (in Chinese).
梁啟文, 刘春轩, 曹柳絮, 等. 材料科学, 2022, 12(5), 453.
3 Chawla N, Chawla K K. Journal of Materials, 2006, 58, 67.
4 Hong Y, Liu J Q, Wu Y C. Reviews on Advanced Materials Science, 2023, 62(1), 158.
5 Cao L G, Huang L, Zhu M Y, et al. Journal of Netshape Forming Engineering, 2024, 16(4), 28(in Chinese).
曹雷刚, 黄磊, 朱明雨, 等. 精密成形工程, 2024, 16(4), 28.
6 Raghu R, Prathap M J, Ponpichai P, et al. IOP Conference Series: Materials Science and Engineering, 2022, 1219, 012045.
7 Tong H T, Zuo R, Qiu D, et al. Journal of Materials Research and Technology, 2021, 15, 1100.
8 Cui Y, Jin T Z, Cao L G, et al. Journal of Alloys and Compounds, 2016, 681, 233.
9 Cui Y, Liao J J, Cao L G, et al. Journal of Materials Engineering, 2024, 52(4), 110 (in Chinese).
崔岩, 廖家杰, 曹雷刚, 等. 材料工程, 2024, 52(4), 110.
10 Ma G N, Zhu S Z, Wang D, et al. Acta Metallurgica Sinica, 2023, 59(12), 1655(in Chinese).
马国楠, 朱士泽, 王东, 等. 金属学报, 2023, 59(12), 1655.
11 Li S Z, Wang T J, Liu G R, et al. Powder Metallurgy Industry, 2018, 28(3), 29(in Chinese).
李书志, 王铁军, 刘桂荣, 等. 粉末冶金工业, 2018, 28(3), 29.
12 Wen K, Xiong B Q, Zhang Y G, et al. Materials Science and Enginee-ring:A, 2018, 716, 42.
13 Wu C D, Ma K K, Zhang D L, et al. Scientific Reports, 2017, 7, 9589.
14 Liu J. Materials Science Forum, 2006, 519-521, 1233.
15 Berg L K, Gjønnes J, Hansen V, et al. Acta Materialia, 2001, 49(17), 3442.
16 Sha G, Cerezo A. Acta Materialia, 2004, 52(15), 4503.
17 Ma K K, Hu T, Yang H, et al. Acta Materialia, 2016, 103, 153.
18 Dellah M, Bournane M, Ragab K A, et al. Materials and Design, 2013, 50, 606.
19 Zhang S H, Jiang H Y, Fu Z X, et al. Journal of Physics: Conference Series, 2022, 2353, 012006.
20 Pu B W, Lin X B, Li B W, et al. Journal of Materials Science, 2020, 55(14), 6145.
21 Villuendas A, Jorba J, Roca A. Metallurgical and Materials Transactions A, 2014, 45(9), 3857.
22 Song Y Z, Wang W M, Pan F S, et al. Materials Reports, 2006(S1), 416(in Chinese).
宋文远, 王文明, 潘复生, 等. 材料导报, 2006(S1), 416.
23 Vlasveld D P N, Groenewold J, Bersee H E N, et al. Polymer, 2005, 46(16), 6102.
24 Cui Y, Ni H C, Cao L G, et al. Materials Reports, 2019, 33(24), 4126(in Chinese).
崔岩, 倪浩晨, 曹雷刚, 等. 材料导报, 2019, 33(24), 4126.
25 Hsieh C L, Tuan W H. Materials Science and Engineering: A, 2005, 393(1-2), 133.
26 Cui K X, Chang X H, Li X P, et al. Materials Reports, 2012, 26(S2), 401(in Chinese).
崔葵馨, 常兴华, 李希鹏, 等. 材料导报, 2012, 26(S2), 401.
27 Lendvai J. Materials Science Forum Vols, 1996, 217-222, 43.
28 Tang J G, Cheng H, Zhang X M, et al. Transactions of Nonferrous Metals Society of China, 2012, 22(6), 1255.
29 Qi X, Cheng X M, Song R G. Corrosion Engineering, Science and Technology, 2021, 56(7), 668.
30 Gubicza J, Lábár J L, Lendvai J, et al. Journal of Materials Science, 2019, 54(15), 10918.
31 He C D, Ren J P, Xu B. Applied Mechanics and Materials, 2012, 157-158, 331.
32 Yang X B, Liu J Z, Chen J H, et al. Acta Metallurgica Sinica, 2014, 27(6), 1070.
33 Khomutov M, Spasenko A, Sova A, et al. The International Journal of Advanced Manufacturing Technology, 2021, 116(3-4), 847.
34 Chinh N Q, Lendva J, Ping D H, et al. Journal of Alloys ang Compounds, 2004, 378, 52.
35 Cao L G, Zhu M Y, Yang Y, et al. JOM, 2024, 76(9), 5170.
36 Li B, Luo B H, He K J, et al. Journal of Alloys and Compounds, 2015, 649, 95.
37 Cui Y, Dong H Q, Cao L G, et al. Heat Treatment of Metals, 2022, 47(1), 142(in Chinese).
崔岩, 董和谦, 曹雷刚, 等. 金属热处理, 2022, 47(1), 142.
[1] 周甲佳, 王一锋, 赵军, 宋晨阳, 吕文朴. 石灰石煅烧黏土基ECC单轴拉伸性能及抗压强度[J]. 材料导报, 2026, 40(1): 24120246-8.
[2] 谢树磊, 欧美琼, 侯坤磊, 王旻, 马颖澈. Mo、W对多晶铸造镍基高温合金组织及应用性能影响的研究进展[J]. 材料导报, 2026, 40(1): 24110085-11.
[3] 贾婧, 庄伟彬, 李菁辉, 曹庆, 刘敬福. Ce对原位自生TiB2/6061复合材料显微组织及力学性能的影响[J]. 材料导报, 2026, 40(1): 24070164-7.
[4] 殷子洛, 朱泉峣, 李凯, 张成杰, 周彦鹏, 张雨晴. 聚丙烯纤维增强交联聚苯乙烯的介电及力学性能研究[J]. 材料导报, 2026, 40(1): 25010020-6.
[5] 姜劲驰, 李文晓, 方可言. 人工智能方法在RTM工艺仿真中的应用[J]. 材料导报, 2026, 40(1): 24120233-8.
[6] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[7] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[8] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[9] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[10] 祝林, 王帅, 游龙, 刘娟, 逄显娟, 陆焕焕, 宋晨飞, 张永振. Mo2BC增强Al基复合材料摩擦学性能研究[J]. 材料导报, 2025, 39(9): 24010247-6.
[11] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[12] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[13] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[14] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[15] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Xiao HE,Yuxin ZOU,Jiajia QIU,Xi YANG,Shaoyuan LI,Wenhui MA. Optical Properties of Ordered Zigzag Silicon Nanowire Arrays Fabricated by Alternate Etching[J]. Materials Reports, 2018, 32(2): 167 -170 .
[3] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[4] DONG Yue, YANG Zhiqiang, GAO Qian. Strength Forecasting of Backfilling Materials by BP Neural Network Model Collaborated with Orthogonal Experiment[J]. Materials Reports, 2018, 32(6): 1032 -1036 .
[5] WU Kunyao, MENG Zhixin, LI Zhao, DING Xu, ZHANG Bin, ZHANG Junyan. Synthesis of Low-friction Long-life Fullerene-like Carbon Film and Its Frictional Characteristics[J]. Materials Reports, 2018, 32(4): 559 -562 .
[6] MA Kun, LIU Ya, TU Hao, SU Xuping, WANG Jianhua. Effect of Mg Content and Si on Fe-Al Reaction Layer in Solid-Liquid
Diffusion Couples of Fe/Zn-Al-Mg Alloys
[J]. Materials Reports, 2017, 31(6): 61 -65 .
[7] WANG Feng. Effects of Particle Shape and Temperature on Its Deposition Character in Cold Spray[J]. Materials Reports, 2017, 31(14): 138 -142 .
[8] LI Yuchao, FU Xuelian, ZHAN Yanhu, XIE Qian, GE Xiangcai, TAO Xuquan, LIAO Chengzhu, LU Zhouguang. Advances in Polymer Dielectrics with High Dielectric Constant and Low Dielectric Loss[J]. Materials Reports, 2017, 31(15): 18 -23 .
[9] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[10] XUE Kemin, BO Dongqing, LI Ping. Hot Compression Microstructure and Rheological Behavior of Rolled 7A60 Aluminum Alloy[J]. Materials Reports, 2018, 32(8): 1306 -1310 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed